Answer:
Similarity: >>Time is independent variable and such is on the x-axis. ... >>Distance time graph tells you how much distance you have travelled, while velocity time graph tells you your acceleration. The difference between them is that the velocity-time graph reveals the speed of an object (and whether it is slowing down or speeding up), while the position-time graph describes the motion of an object over a period of time.
Explanation:
Answer:
The speed of the large cart after collision is 0.301 m/s.
Explanation:
Given that,
Mass of the cart, 
Initial speed of the cart, 
Mass of the larger cart, 
Initial speed of the larger cart, 
After the collision,
Final speed of the smaller cart,
(as its recolis)
To find,
The speed of the large cart after collision.
Solution,
Let
is the speed of the large cart after collision. It can be calculated using conservation of momentum as :





So, the speed of the large cart after collision is 0.301 m/s.
Answer:
<em>2.753*10^-11N</em>
Explanation:
According to Newton's law of gravitation, the force between the masses is expressed as;
F = GMm/d²
M and m are the distances
d is the distance between the masses
Given
M = 3.71 x 10 kg
m = 1.88 x 10^4 kg
d = 1300m
G = 6.67 x 10-11 Nm²/kg
Substitute into the formula
F = 6.67 x 10-11* (3.71 x 10)*(1.88 x 10^4)/1300²
F = 46.52*10^(-6)/1.69 * 10^6
F = 27.53 * 10^{-6-6}
F = 27.53*10^{-12}
F = 2.753*10^-11
<em>Hence the gravitational force between the asteroid is 2.753*10^-11N</em>
<em></em>
Well first of all, the Space Shuttle program ended a few years ago, and none have been launched since then.
The Shuttle never went to places that were properly referred to as "outer space". When they flew, the Space Shuttles went to low Earth orbit, where the acceleration of gravity is roughly 85% of its value on the Earth's surface.
So a Shuttle that weighed 20 million Newtons on the launch pad weighed roughly 17 million Newtons while in orbit.
Answer:
8 time increase in K.E.
Explanation:
Consider Mass of truck = m kg and speed = v m/s then
K.E. = 1/2 ×mv²
If mass and speed both are doubled i.e let m₀ = 2m and v₀ = 2v then
(K.E.)₀ = 1/2 ×2m(2v)²
(K.E.)₀ = 8 (1/2 × mv²) = 8 × K.E.