Answer:
radio waves, microwaves, infrared, visible light, ultraviolet light, X-rays, gamma rays
Explanation:
Electromagnetic waves are oscillations of electric and magnetic fields in a direction perpendicular to the direction of motion of the wave (transverse waves). They are classified into 7 different types, according to their frequencies.
From lowest to highest frequency, we have:
Radio waves 
Microwaves 
Infrared 
Visible light 
Ultraviolet 
X-rays 
Gamma rays 
Answer:
Ender's mass = 2.25 kg
Explanation:
using law of conservation of momentum .
since there is inelastic collision
given.

Answer:
Explanation:
T = 2π
(T / 2π)² = L/g
g = 4π²L/T²
g = 4π²(0.75000)/(1.7357)²
g = 9.82814766...
g = 9.8281 m/s²
Answer:
1) At the highest point of the building.
2) The same amount of energy.
3) The kinetic energy is the greatest.
4) Potential energy = 784.8[J]
5) True
Explanation:
Question 1
The moment when it has more potential energy is when the ball is at the highest point in the building, that is when the ball is at a height of 40 meters from the ground. It is taken as a point of reference of potential energy, the level of the soil, at this point of reference the potential energy is zero.
![E_{p} = m*g*h\\E_{p} = 2*9.81*40\\E_{p} = 784.8[J]](https://tex.z-dn.net/?f=E_%7Bp%7D%20%3D%20m%2Ag%2Ah%5C%5CE_%7Bp%7D%20%3D%202%2A9.81%2A40%5C%5CE_%7Bp%7D%20%3D%20784.8%5BJ%5D)
Question 2)
The potential energy as the ball falls becomes kinetic energy, in order to be able to check this question we can calculate both energies with the input data.
![E_{p}=m*g*h\\ E_{p} = 2*9.81*20\\ E_{p} = 392.4[J]\\](https://tex.z-dn.net/?f=E_%7Bp%7D%3Dm%2Ag%2Ah%5C%5C%20E_%7Bp%7D%20%3D%202%2A9.81%2A20%5C%5C%20E_%7Bp%7D%20%3D%20392.4%5BJ%5D%5C%5C)
And the kinetic energy will be:
![E_{k}=0.5*m*v^{2}\\ where:\\v = velocity = 19.8[m/s]\\E_{k}=0.5*2*(19.8)^{2}\\ E_{k}=392.04[J]](https://tex.z-dn.net/?f=E_%7Bk%7D%3D0.5%2Am%2Av%5E%7B2%7D%5C%5C%20%20where%3A%5C%5Cv%20%3D%20%20velocity%20%3D%2019.8%5Bm%2Fs%5D%5C%5CE_%7Bk%7D%3D0.5%2A2%2A%2819.8%29%5E%7B2%7D%5C%5C%20%20E_%7Bk%7D%3D392.04%5BJ%5D)
Therefore it is the ball has the same potential energy and kinetic energy as it is half way through its fall.
Question 3)
As the ball drops all potential energy is transformed into kinetic energy, therefore being close to the ground, the ball will have its maximum kinetic energy.
![E_{k}=E_{p}=m*g*h = 2*9.81*40\\ E_{k} = 784.8[J]\\ E_{k} = 0.5*2*(28)^{2}\\ E_{k} = 784 [J]](https://tex.z-dn.net/?f=E_%7Bk%7D%3DE_%7Bp%7D%3Dm%2Ag%2Ah%20%3D%202%2A9.81%2A40%5C%5C%20%20E_%7Bk%7D%20%3D%20784.8%5BJ%5D%5C%5C%20E_%7Bk%7D%20%3D%200.5%2A2%2A%2828%29%5E%7B2%7D%5C%5C%20E_%7Bk%7D%20%3D%20784%20%5BJ%5D)
Question 4)
It can be easily calculated using the following equation
![E_{p} =m*g*h\\E_{p}=2*9.81*40\\E_{p} =784.8[J]](https://tex.z-dn.net/?f=E_%7Bp%7D%20%3Dm%2Ag%2Ah%5C%5CE_%7Bp%7D%3D2%2A9.81%2A40%5C%5CE_%7Bp%7D%20%3D784.8%5BJ%5D)
Question 5)
True
The potential energy at 20[m] is:
![E_{p}=2*9.81*20\\ E_{p}= 392.4[J]\\The kinetic energy is:\\E_{k}=0.5*2*(19.8)^{2} \\E_{k}=392[J]](https://tex.z-dn.net/?f=E_%7Bp%7D%3D2%2A9.81%2A20%5C%5C%20E_%7Bp%7D%3D%20392.4%5BJ%5D%5C%5CThe%20kinetic%20energy%20is%3A%5C%5CE_%7Bk%7D%3D0.5%2A2%2A%2819.8%29%5E%7B2%7D%20%5C%5CE_%7Bk%7D%3D392%5BJ%5D)
Answer:
Explanation:
V = J/C
V = 20/1
= 20 v
Option A is the correct answer