Statement :- We assume the orthagonal sequence
in Hilbert space, now
, the Fourier coefficients are given by:

Then Bessel's inequality give us:

Proof :- We assume the following equation is true

So that,
is projection of
onto the surface by the first
of the
. For any event, 
Now, by Pythagoras theorem:


Now, we can deduce that from the above equation that;

For
, we have

Hence, Proved
Answer:
0 m/s
Explanation:
velocity= change in displacement/ time
at rest, the ball does not travel any distance
0/ t
=0
Answer:
How Heavy? More than 2,300,000 limestone and granite blocks were pushed, pulled, and dragged into place on the Great Pyramid. The average weight of a block is about 2.3 metric tons (2.5 tons).
Explanation:
If we have the angle and magnitude of a vector A we can find its Cartesian components using the following formula

Where | A | is the magnitude of the vector and
is the angle that it forms with the x axis in the opposite direction to the hands of the clock.
In this problem we know the value of Ax and Ay and we need the angle
.
Vector A is in the 4th quadrant
So:

So:

So:

= -47.28 ° +360° = 313 °
= 313 °
Option 4.

- c. The weight of an object on the moon will be the same as its weight on Earth. It is false because the weight of an on the moon will be 1/6 th times its weight on Earth.
- d. The weight of an object is its mass multiplied by the force of gravity. The statement is false because the formula of weight is mass × acceleration due to gravity, not force of gravity.
- e. The mass and weight of an object are the same thing. The statement is false because mass means a body of matter. While weight of an object is its mass multiplied by the force of gravity.
- f. The mass of an object is the force of gravity acting upon an object. It is false because it will be the weight of the object not mass.
- So, the answers are c, d, e and f.
Hope you could understand.
If you have any query, feel free to ask.