Answer:
Stretch can be obtained using the Elastic potential energy formula.
The expression to find the stretch (x) is 
Explanation:
Given:
Elastic potential energy (EPE) of the spring mass system and the spring constant (k) are given.
To find: Elongation in the spring (x).
We can find the elongation or stretch of the spring using the formula for Elastic Potential Energy (EPE).
The formula to find EPE is given as:

Rewriting the above expression in terms of 'x', we get:

Example:
If EPE = 100 J and spring constant, k = 2 N/m.
Elongation or stretch is given as:

Therefore, the stretch in the spring is 10 m.
So, stretch in the spring can be calculated using the formula for Elastic Potential Energy.
Answer:
The initial energy level = 6
Explanation:
Photon wavelength is proportional to energy. The wavelength of emitted photons is related to the energy levels of the atom as given by the Rydberg formula:
ₕ₁₂
(1/λ) = Rₕ [(1/n₂²) − (1/n₁²)]
where n₂ = final energy level = 2
n₁ = initial energy level = ?
Rₕ = Rydberg's constant = 1.097 × 10⁷ m⁻¹
λ = wavelength = 410 nm = 410 × 10⁻⁹ m
1/(410 × 10⁻⁹) = (1.097 × 10⁷) [(1/2²) − (1/n₁²)]
0.223 = [(1/4) − (1/n₁²)]
(1/n₁²) = 0.02778
n₁² = 1/0.02778 = 36
n₁ = 6.
C. Populations.
Hope that's right.
Answer:
im pretty sure the answer is c please mark me brainliest
Answer:
0.01 H
Explanation:
V = 12 cos (1000t + 45)
C = 100 micro farad
Let the inductance be L .
When the current and the voltage are in the same phase so it is the condition of resonance.
So capacitive reactance = inductive reactance
Xc = XL
1/ωC = ωL
L = 1 / ω²C
By comparisonV = Vo Cos (ωt + Ф)
ω = 1000 rad/s
L = 1 / (1000 x 1000 x 100 x 10^-6)
L = 1 / 100
L = 0.01H
thus, the inductance of the inductor is 0.01 H.