Answer:
Explanation:
Let's model with sine:
x(t) = Asin(ωt)
so that t = 0, x = 0
x(t) = 0.65 m = A*sin(ω*t)
v(t) = x(t)'= 2.50 m/s = A*ω*cos(ω*t)
a(t) = v(t)'= -8.40 m/s² = -A*ω²*sin(ω*t)
x(t) / a(t) = Asin(ωt) / -Aω²sin(ωt)
0.65m / -8.40 m/s² = -1 / ω²
ω²
= 12.934 rad^2/s^2
ω = 3.59 rad/s
x(t) / v(t) = Asin(ωt) / Aωcos(ωt)
0.650m / 2.50m/s = tan(3.59t) / 3.59 rad/s
0.9334 = tan(3.59t)
t = 0.176 s
x(0.176) = A*sin(3.59*0.176)
0.65 m= A*sin(0.631)
A = 0.732 m ← amplitude of motion