Answer:
Explanation:
The speed of sound in air to be 343 m/s.
Given:
distance 'd' = 5 m
L = 12 m
It can be concluded that path difference must be equal to half of the wavelength when person is observing destructive interference'y' at 1 m distance from the equidistant position
Since
λ/2 = yd/L
λ/2 = (1 x 5)/12
λ = 0.833m
Frequency of the sound is given by,
f = v / λ => 343 / 0.833
f=411.6 Hz
Answer:
Just go broom broom on ya teacher
Explanation:
cause why not
When the object is at rest, there is a zero net force due the cancellation of the object's weight <em>w</em> with the normal force <em>n</em> of the table pushing up on the object, so that by Newton's second law,
∑ <em>F</em> = <em>n</em> - <em>w</em> = 0 → <em>n</em> = <em>w</em> = <em>mg</em> = 112.5 N ≈ 113 N
where <em>m</em> = 12.5 kg and <em>g</em> = 9.80 m/s².
The minimum force <em>F</em> needed to overcome <u>maximum</u> static friction <em>f</em> and get the object moving is
<em>F</em> > <em>f</em> = 0.50 <em>n</em> = 61.25 N ≈ 61.3 N
which means a push of <em>F</em> = 15 N is not enough the get object moving and so it stays at rest in equilibrium. While the push is being done, the net force on the object is still zero, but now the horizontal push and static friction cancel each other.
So:
(a) Your free body diagram should show the object with 4 forces acting on it as described above. You have to draw it to scale, so whatever length you use for the normal force and weight vectors, the length of the push and static friction vectors should be about 61.3/112.5 ≈ 0.545 ≈ 54.5% as long.
(b) Friction has a magnitude of 15 N because it balances the pushing force.
(c) The object is in equilibrium and not moving, so the acceleration is zero.
Answer:
Sound waves in liquids and gases involve alternating compression and rarefaction of material along a line defining the direction of propagation of the wave. These waves are known as longitudinal waves, and of course exist only in a medium that can be compressed and rarefied. In solids, sound energy also produces longitudinal waves, but it can also produce transverse waves, in which compression and rarefaction occurs perpendicular to the direction of propagation. These two waves propagate at different speeds, a phenomenon that is most noticeable in earthquakes. The first wave gives notice that the quake is coming, the second one does the damage. The time between the two tells you how far away the epicenter is. In water there is another kind of wave, called a gravity wave, the kind you see at the beach. All of these wave require a medium. There is no sound in a vacuum.