It is important for scientists and engineers to be able to control the design of the material because<u> it create solutions to problems</u>.
<h3>Why material science and engineering is important?</h3>
What things are made of and why they behave the way they do are lessons we learn from materials science. Materials engineering teaches us how to use knowledge to improve things and the way they are made. Research and industry innovation in fields as diverse as aerospace and medicine are driven by materials science and engineering.
<h3>Why is it important for scientists to use the scientific method?</h3>
The scientific method is essential because: It follows a set of rules. Scientists conduct experiments in a standardized manner because the steps used in the scientific method are systematic. This suggests that their research might be spread widely.
To know more about aerospace :
brainly.com/question/27182063
#SPJ9
Spore formation is a form of asexual reproduction used by mushrooms and molds.
During budding, the offspring grows from the body of the parent.
Fragmentation is a form of asexual reproduction that must be followed by regeneration.
Explanation:
Asexual reproduction is the type of reproduction where the gamete formation and fusion have no relevance or existence. It functions on the process of somatic cell division via mitosis and the offsprings are identical to their parents.
The spore formation occurs in fungi through sporangia, bursting open to shed spores, forming into a new young ones. Budding occurs out as an outgrowth of the parent and attains maturity and separates. Fragmentation is the process where the parents fall apart into pieces and regeneration follows.
2C⁺²O⁻² + 2N⁺²O⁻² = 2C⁺⁴O⁻²₂ + N₂⁰
C⁺² → C⁺⁴ + 2e⁻
carbon was oxidized
Answer:
A decomposition reaction occurs when one reactant breaks down into two or more products. This can be represented by the general equation: AB → A + B. Examples of decomposition reactions include the breakdown of hydrogen peroxide to water and oxygen, and the breakdown of water to hydrogen and oxygen.
A quantum (plural, quanta<span>) is the minimum amount of </span>energy<span> that can be absorbed or released by matter. It is a discrete, or distinct, amount of </span>energy<span>. ... Thus, they can occupy only fixed </span>energy levels<span> around the nucleus that correspond to quantum increases in </span>energy<span>.</span>