Answer:
The correct option is: Carbonate ion < Carbon dioxide < Carbon monoxide
Explanation:
Bond energy is defined as the average energy needed to break a chemical covalent bond and signifies the strength of chemical covalent bond.
The bond strength of a covalent bond depends upon the <u>bond length and the bond order.</u>
Carbon monoxide molecule (CO) has two covalent bond and one dative bond. Bond order 2.6
Carbon dioxide (CO₂) has two carbon-oxygen (C-O) double bonds of equal length. Bond order 2.0
Carbonate ion (CO₃²⁻) has three C-O partial double bonds. Bond order 1.5
Also, the bond length is <u>inversely proportional to the bond order and bond strength.</u>
Therefore, <u>order of C-O bond length:</u> Carbon monoxide<Carbon dioxide<Carbonate ion
<u>Order of C-O bond order</u>: Carbonate ion<Carbon dioxide<Carbon monoxide
<u>Order of C-O bond strength or energy</u><u>: Carbonate ion<Carbon dioxide<Carbon monoxide</u>
Answer:
The number of carbon atoms in the container is 1.806 × 10²⁴ or the container contains 1.806 × 10²⁴ atoms of carbon
Explanation:
By Avogadro's number, 1 mole of a substance contains 6.02 × 10²³ particles of the substance
Here we have 0.45 mole of CO₂ contains
0.45 × 6.02 × 10²³ particles of CO₂ that is 2.709 × 10²³ particles of CO₂ or equivalent to 2.709 × 10²³ atoms of Carbon
Similarly, 2.55 moles of CaC₂ contains 2.55 × 6.02 × 10²³ particles of CaC₂ or 1.5351 × 10²⁴ atoms of Carbon
The total number of carbon atoms is therefore;
2.709 × 10²³ + 1.5351 × 10²⁴ = 1.806 × 10²⁴ atoms of carbon.
Hi,
Answer is 191.2.
800J = 191.2 cal
Hope this helps.
Theodore Richards; first scienstist to recieve nobel prize in Chemistry, earning the award "in recognition of his exact determinations of atomic weights of a large number of chemical elements."