Answer:
Explanation:
6CO₂ + 6 H₂O ⇄ C₆H₁₂0₆ + 6O₂
This is the chemical equation given .
1. The equation shows a __Chemical equation_______the breaking and forming of chemical bonds that leads to a change in the composition of matter.
2. In the equation, CO₂ is a___reactant_____.
3. In the equation, C₆H₁₂0₆ is a ___product________.
4. In O₂, the type of bond that holds the two oxygen atoms together is a_nonpolar_covalent bond_________.
5. In H₂O, the type of bond that holds one of the hydrogen atoms to the oxygen atom is a__polar_hydrogen bond____.
6. The number of oxygen atoms on the left side of the equation is__equal to_________ the number of oxygen atoms on the right side.
Answer:
metal Atom
Explanation:
every transition metal atom are responsible for the flame color. Some metal are also confirmed by flame test.
Answer:
A combination is certainly possible, but you should not take formal charges so literally
Normally, when a covalent bond is found, the two atoms both bring in one electron. As you identify correctly, in the case of nitric acid that would not be possible completely. If you draw the different possible resonance structures, the most likely structure has a single bond between the nitrogen and an oxygen where the oxygen has 3 lone pairs and both electrons in the bond are donated by the nitrogen. This makes the nitrogen "positive" and that oxygen "negative", but in fact the electrons move more freely in the molecule and charges are more distributed. You will not be able to find "the negatively charged" oxygen atom.
Explanation:
<h2>
<u>PLEASE</u><u> </u><u>MARK</u><u> ME</u><u> BRAINLIEST</u><u> AND</u><u> FOLLOW</u><u> M</u><u> E</u><u> LOTS</u><u> OF</u><u> LOVE</u><u> FROM</u><u> MY</u><u> HEART</u><u> AND</u><u> SOUL</u><u> DARLING</u><u> </u><u>TEJASWI </u><u> HERE</u><u> ❤️</u></h2>
Answer:
B.0.2 J/g°C
Explanation:
From the attached picture;
- Heat attained in the solid phase is 200 Joules
- Change in temperature is 50°C ( from 0°C to 50°C)
- Mass of the solid is 20 g
We are required to determine the specific heat capacity of the substance;
- We need to know that Quantity of heat is given by the product of mass,specific heat capacity and change in temperature.
- That is; Q = mcΔT
Rearranging the formula;
c = Q ÷ mΔT
Therefore;
Specific heat = 200 J ÷ (20 g × 50°c)
= 0.2 J/g°C
Thus, the specific heat of the solid is 0.2 J/g°C
Its B addition
where an atom adds to the broken double bond of a hydrocarbon and saturates it
hope that helps