Through the compact molecules of a solid sound would move at its slowest.
Through the loose molecules of a liquid sound would move moderately.
Through the very spacious molecules of a gas sound would move very fast.
Answer:
Yes, there is such a way.
Explanation:
If currents flow in the same direction in two or more long parallel wires, there will be an attractive force between the wires. If the current flows in different directions, there will be a repulsive force between the wires. In this case, these three parallel wires, can be be made to carry current in the same direction, creating an attractive force between all three wires.
Note that it is not possible to have at the least one of them carry current in the opposite direction and still have an attractive current between them.
Answer:

Explanation:
Gravitational potential energy is the energy an object possesses due to its position. It is the product of mass, height, and acceleration due to gravity.

The object has a mass of 150 kilograms and is raised to a height of 20 meters. Since this is on Earth, the acceleration due to gravity is 9.8 meters per square second.
- m= 150 kg
- g= 9.8 m/s²
- h= 20 m
Substitute the values into the formula.

Multiply the three numbers and their units together.


Convert the units.
1 kilogram meter square per second squared (1 kg *m²/s²) is equal to 1 Joule (J). Our answer of 29,400 kg*m²/s² is equal to 29,400 Joules.

The crate has <u>29,400 Joules</u> of potential energy.
Answer:
Explanation:
The change in force = 9.81(1.95 - 0.300) = 16.2 N
The change in length is 0.750 - 0.200 = 0.550 m
K = ΔF/Δx = 16.2/0.550 = 29.4 N/m
Answer:
is the compression in the spring
Explanation:
Given:
- mass of the bullet,

- mass of block,

- stiffness constant of the spring,

- initial velocity of the spring just before it hits the block,

<u>Now since the bullet-mass gets embed into the block, we apply the conservation of momentum as:</u>



Now this kinetic energy of the combined mass gets converted into potential energy of the spring.



is the compression in the spring