Answer: The concentration of
will be
after 416 seconds have passed.
Explanation:
Expression for rate law for first order kinetics is given by:

where,
k = rate constant = 
t = age of sample = ?
a = let initial amount of the reactant = 
a - x = amount left after decay process = 


The concentration of
will be
after 416 seconds have passed.
Answer:
Functional groups.
Explanation:
Functional groups are the specific substituents present within the molecules which are responsible for characteristic chemical properties the molecule shows.
Glucose contains alcohol and aldehyde group while hexanoic acid contains carboxylic acid group. <u>The presence different types of the functional groups in both the compounds results in the difference in the properties of both the compounds.</u>
Answer:
When the two atoms move towards each other a compound is formed by sharing electron pairs supplied by each of the atoms to enable them have the stable 8 (octet) valency electrons in their outermost shell
Explanation:
The electronic configuration of the given element can be written as follows;
1s²2s²2p⁴
The given electronic configuration is equivalent to that of oxygen, therefore, we have;
The number of electrons in the valence shell = 2 + 4 = 6 electrons
Therefore, each atom requires 2 electrons to complete its 8 (octet) electrons in the outermost shell
When the two atoms move towards each other, they react and combine to form a compound by sharing 4 electrons, 2 from each atom, such that each atom can have an extra 2 electrons in its outermost orbit in the newly formed compound and the stable octet configuration is attained by each of the atoms in the newly formed compound.
Answer:
The correct answer is "False".
Explanation:
It is false that as carbon dioxide enters systemic blood, it causes more oxygen to dissociate from hemoglobin. Once an atom of oxygen binds to hemoglobin, hemoglobin change its shape and makes easier than a second and a third atom of oxygen binds towards it. This change in conformation makes no possible that carbon dioxide can cause that oxygen dissociates from hemoglobin.