I can't actually answer this one if the empirical formula is not given. Luckily, I've found a similar problem from another website. The problem is shown in the picture attached. It shows that the empirical formula is CH₂O. Let's calculate the molar mass of the empirical formula.
Molar mass of E.F = 12 + 2(1) + 16 = 30 g/mol
Then, let's divide this to the molar mass of the molecular formula.
Molar mass of M.F/Molar mass of E.F = 180/30 = 6
Therefore, let's multiply 6 to each subscript in the empirical formula to determine the actual molecular formula.
<em>Actual molecular formula = C₆H₁₂O₆</em>
Answer: Yes
Explanation:
With more water, the molecules of the substance have more water molecules to form bonds with, thus they are dissolved even faster at that same particular temperature.
For example: a mildly soluble substance like powdered milk get more dissolved in your teacup as water, the solvent is increased
Answer:
The size of an isolated atom can't be measured because we can't determine the location of the electrons that surround the nucleus. We can estimate the size of an atom, however, by assuming that the radius of an atom is half the distance between adjacent atoms in a solid. This technique is best suited to elements that are metals, which form solids composed of extended planes of atoms of that element. The results of these measurements are therefore often known as metallic radii.
.Explanation:
Answer:
176984.38J
Explanation:
E = mC∆T
Where E is the energy in joules
M is the mass of water
C is the specific heat capacity of water =4.184J/g°C
It is known that it will take 4.184J of energy to change the temperature of water by one degree Celsius.
∆T = 98.6°c - 5.4°c
= 93.2°c
∆H = 454.3g × 4.18J/g°C × 93.2°c
= 176984.3768
176984.38J
Answer:
C
Explanation:
because percentage yield =actual/theoretical yield