Explanation:
a unit of mass used to express atomic and molecular weights, equal to one twelfth of the mass of an atom of carbon-12.
Answer:
More than 2,000 Years Ago, the Greek philosopher Aristotle suggested a model of the solar system. Aristotle's model was geocentric, or Earth-centered. In the model. the sun, stars, planets revolved around the Earth. In 150 AD an astrologer named Ptolemy began to support Aristotle's geocentric model.
In 1543 AD, an astronomer named Copernicus proposed a heliocentric model of the solar system. In this model, the planets revolve around the sun. Due to the invention of the telescope, the solar system could be explored in more detail. Galileo used the telescope to support Copernicus's theory of the sun being the center of the universe.
In the late 1500's, Kepler developed a law that explained planetary motion. Kepler's law is so accurate we still use them today.
Explanation:
Can you show me the rest of the question? I can not see it. Also, I know this is multiple choice fill in the blanks so I might be wrong. I hope that this helped though. This took a lot of research. The websites I used are commented down below. |
\|/
C) 3 Moles
This is because of the molecular structure shown in the image
RbOH is a strong base that dissociates completely and HCl is a strong acid that too dissociates completely. the complete reaction between the acid and base is;
RbOH + HCl ---> RbCl + H₂O
stoichiometry of acid to base is 1:1
At neutralisation point
H⁺ mol = OH⁻ mol
mol = molarity x volume
if Ma - molarity of acid and Va - volume of acid reacted
Mb - molarity of base and Vb - volume of base reacted
Ma x Va = Mb x Vb
0.5 M x 52.8 mL = Mb x 60.0 mL
Mb = 0.44 M
molarity of base - 0.44 M
Answer:

Explanation:
Hello!
In this case, when we want to balance chemical reactions such as in this case, the idea is to equal to number of atoms of each element at each side of the equation according to the lay of conservation of mass, just as shown below:

Because we have four phosphorous and ten oxygen atoms at each side.
Best regards!