Answer:
113.8g
Explanation:
Statement of problem: mass of 1.946mole of NaCl
Given parameters:
Number of moles of NaCl = 1.946mole
Unknown: mass of NaCl
Solution
To find the mass of NaCl, we apply the concept of moles which expresses the relationship between number of moles and mass according to the equation below:
Number of moles = 
To find the molar mass of NaCl:
the atomic mass of Na = 23g
atomic mass of Cl = 35.5g
Molar mass of NaCl = (23 + 35.5) = 58.5gmol⁻¹
Mass of NaCl = Number of moles x molar mass of NaCl
Mass of NaCl = 1.946 x 58.5 = 113.8g
Explanation:
yan po sana makatulong
pa brainliest na din po thanks
The atomic number of Be is 4, and so it has 2 shells. There are valence electrons in the second, which is the outermost, shell of Be. To get the element with one more shell, there would be 3 shells on the new element, and 1 less valence electron, so the new element should have 1 valence electron. Sodium is the element with 3 shells, and one valence electron which fits perfectly into the description.
Answer:
I think the answer would be b, sorry if I'm wrong(EDIT: ITS ACTUALLY AAAAA)
Answer:-
Carbon
[He] 2s2 2p2
1s2 2s2 2p2.
potassium
[Ar] 4s1.
1s2 2s2 2p6 3s2 3p6 4s1
Explanation:-
For writing the short form of the electronic configuration we look for the nearest noble gas with atomic number less than the element in question. We subtract the atomic number of that noble gas from the atomic number of the element in question.
The extra electrons we then assign normally starting with using the row after the noble gas ends. We write the name of that noble gas in [brackets] and then write the electronic configuration.
For carbon with Z = 6 the nearest noble gas is Helium. It has the atomic number 2. Subtracting 6 – 2 we get 4 electrons. Helium lies in 1st row. Starting with 2, we get 2s2 2p2.
So the short term electronic configuration is [He] 2s2 2p2
Similarly, for potassium with Z = 19 the nearest noble gas is Argon. It has the atomic number 18. Subtracting 19-18 we get 1 electron. Argon lies in 3rd row. Starting with 4, we get 4s1.
So the short electronic configuration is
[Ar] 4s1.
For long term electronic configuration we must write the electronic configuration of the noble gas as well.
So for Carbon it is 1s2 2s2 2p2.
For potassium it is 1s2 2s2 2p6 3s2 3p6 4s1