DEEZ NUTS ha gattti -sorry
Answer: I2 is the Oxidant; while the 2S2O3(-2) is the reductant.
Explanation:
An Oxidant is any substance that oxidizes, or receives electrons from, another; in so doing, it becomes reduced in oxidation number.
A Reductant thus exactly the opposite.
Note that the equation provided shows that Iodine (I2) received an electron to become NEGATIVELY CHARGED:
I2 --> 2I-.
The oxidation number reduced from 0 to -1.
In contrast, the oxidation number of 2S2O3(-2) increases from -4 to -2.
Thus, I2 is the Oxidant; while the 2S2O3(-2) is the reductant.
Answer:
301.8 g
Explanation:
We prepare a solution with 200.4 g of water (solvent) and 101.42 g of salt (solute). The mass of the solution is equal to the sum of the mass of the solvent and the mass of the solute.
m(solution) = m(solute) + m(solvent)
m(solution) = 200.4 g + 101.42 g
m(solution) = 301.8 g (we round-off to one decimal according to the significant figures rules)
Tetrahedral arrangement is resulted upon mixing one s and three p atomic orbitals, resulting in 4 hybridized
orbitals →
hybridization.
<h3>What is
orbital hybridization?</h3>
In the context of valence bond theory, orbital hybridization (or hybridisation) refers to the idea of combining atomic orbitals to create new hybrid orbitals (with energies, forms, etc., distinct from the component atomic orbitals) suited for the pairing of electrons to form chemical bonds.
For instance, the valence-shell s orbital joins with three valence-shell p orbitals to generate four equivalent sp3 mixes that are arranged in a tetrahedral configuration around the carbon atom to connect to four distinct atoms.
Hybrid orbitals are symmetrically arranged in space and are helpful in the explanation of molecular geometry and atomic bonding characteristics. Usually, atomic orbitals with similar energies are combined to form hybrid orbitals.
Learn more about Hybridization
brainly.com/question/22765530
#SPJ4
Answer:
So, the energy of two hydrogen atoms is lower when the two atoms are together than when the two atoms are apart; that is why they stay together.
Explanation: