Hi! The answer is ‘B’! Because the nucleus is found at the center and contains protons (positive charge) and neutrons (no charge)
Answer: W = 11340J
Explanation:
Hey there! I will give the following steps, if you have any questions feel free to ask me in the comments below.
So this is the Formula: Power = Work / Time.
<u>Step 1:</u><em><u> Find the Formula</u></em>
P = W / T
<em><u>
</u></em>
<u>Step 2: </u><u><em>Make W the subject of the equation.</em></u>
W = PT
<u>Step 3:</u><u> </u><u><em>Given.</em></u>
P = 270 Watts, T = 42 seconds
<u>Step 4:</u><u><em> Substitute these values into equation 2
.</em></u>
W = 270(42)
<u>Step 5:</u><u> </u><u><em>Simplify.</em></u>
W = 11340J
The amount of work done was 11340.
~I hope I helped you! :)~
Answer:

Explanation:
Given:
- time taken by the sun to complete one revolution,

- radial distance of the sunspot,

<u>Therefore, angular speed of rotation of sun:</u>

<u>Now the tangential velocity of the sunspot can be given by:</u>



Correct question:
Consider the motion of a 4.00-kg particle that moves with potential energy given by

a) Suppose the particle is moving with a speed of 3.00 m/s when it is located at x = 1.00 m. What is the speed of the object when it is located at x = 5.00 m?
b) What is the magnitude of the force on the 4.00-kg particle when it is located at x = 5.00 m?
Answer:
a) 3.33 m/s
b) 0.016 N
Explanation:
a) given:
V = 3.00 m/s
x1 = 1.00 m
x = 5.00

At x = 1.00 m

= 4J
Kinetic energy = (1/2)mv²

= 18J
Total energy will be =
4J + 18J = 22J
At x = 5

= -0.24J
Kinetic energy =

= 2Vf²
Total energy =
2Vf² - 0.024
Using conservation of energy,
Initial total energy = final total energy
22 = 2Vf² - 0.24
Vf² = (22+0.24) / 2

= 3.33 m/s
b) magnitude of force when x = 5.0m



At x = 5.0 m


= 0.016N
Answer:
A ruby is measures a 9 on the Mohs Scale of Hardness, second only to diamond and matched with sapphire. This makes a ruby an extremely hard and durable gemstone.
A sapphire is the birthstone for September. It is also a traditional gift for those celebrating 5th or 45th anniversaries.