<h2>
Answer:</h2>
<u>Friction:</u>
When an object slips on a surface, an opposing force acts between the tangent planes which acts in the opposite direction of motion. This opposing force is called Friction. Or in other words, Friction is the opposing force that opposes the motion between two surfaces.
The main component of friction are:
<u>Normal Reaction (R):
</u>
Suppose a block is placed on a table in the above picture, which is in resting state, then two forces are acting on it at that time.
The first is due to its weight mg which is working from its center of gravity towards the vertical bottom.
The second one is superimposed vertically upwards by the table on the block, called the reaction force (P). This force passes through the center of gravity of the block.
Due to P = mg, the box is in equilibrium position on the table.
<u>Coefficient of friction ( </u>μ )<u>:
</u>
The ratio of the force of friction and the reaction force is called the coefficient of friction.
Coefficient of friction, µ = force of friction / reaction force
μ = F / R
The coefficient of friction is volume less and dimensionless.
Its value is between 0 to 1.
<u>Advantage and disadvantage from friction force:
</u>
- The advantage of the force of friction is that due to friction, we can walk on the earth without slipping.
- Brakes in all vehicles are due to the force of friction.
- We can write on the board only because of the force of friction.
- The disadvantage of this force is that due to friction, some parts of energy are lost in the machines and there is wear and tear on the machines.
<u>How to reduce friction:
</u>
- Using lubricants (oil or grease) in machines.
- Friction can be reduced by using ball bearings etc.
- Using a soap solution and powder.
Momentum is a product mass and velocity. If a certain object posses a kinetic energy, then it should have a momentum since it is moving which has a velocity. However, if the object is at rest and only has potential energy, then it would not have momentum. So, for the first question the answer would be yes, an object can have energy without having any momentum. For the second question, every object whether it is moving or at rest, possess some energy, potential for an object at rest and kinetic for an object that is moving. Thus, the answer would be no, an object having momentum would always have energy.
<span>NO.
Air resistance does not affect the motion of a falling object differently when the mass is greater because the mass of an object does not in any way affect the speed of falling due to gravity, and air resistance depends only on the speed of the object and its surface area.</span>
Answer:
Vb = k Q / r r <R
Vb = k q / R³ (R² - r²) r >R
Explanation:
The electic potential is defined by
ΔV = - ∫ E .ds
We calculate the potential in the line of the electric pipe, therefore the scalar product reduces the algebraic product
VB - VA = - ∫ E dr
Let's substitute every equation they give us and we find out
r> R
Va = - ∫ (k Q / r²) dr
-Va = - k Q (- 1 / r)
We evaluate with it Va = 0 for r = infinity
Vb = k Q / r r <R
We perform the calculation of the power with the expression of the electric field that they give us
Vb = - int (kQ / R3 r) dr
We integrate and evaluate from the starting point r = R to the final point r <R
Vb = ∫kq / R³ r dr
Vb = k q / R³ (R² - r²)
This is the electric field in the whole space, the places of interest are r = 0, r = R and r = infinity
Answer:
THUS,THE MAJOR SOURCES OF ENERGY DURING EXERCISE ARE CARBOHYDRATES AND FATS.
Explanation: