This would be a cold front that forms when a warm air mass meets the area of a cooler air mass, although it should be noted that this doesn't always feel "cold".
Answer:
Same work is done by the two workers
The first worker exerts more power than the second person
Explanation:
Work is the product of force and distance moved in the direction of the applied force
Power is the rate at which work is done
We can answer this problem using Ampere’s Law:
<span>Bh = μoNI </span>
Where:
B = Magnetic Field
h = coil length
<span>μo = permeability =4π*10^-7 T·m/A </span>
N = number of turns
I = current
It is given that B=0.0015T, I=1.0A, h=10 cm =
0.1m<span>
Use Ampere's law to find # turns:
Which can be rewritten as:
<span>N = Bh/μoI </span>
N = (0.0015)(0.1)/(4π*10^-7)(1.0)
N = 119.4
</span>
<span>Answer:
119.4 turns</span>
Answer:
44.3 m/s
Explanation:
Given that a ball is thrown horizontally from the top of a building 100m high. The ball strikes the ground at a point 120 m horizontally away from and below the point of release.
What is the magnitude of its velocity just before it strikes the ground ?
The parameters given are:
Height H = 100m
Since the ball is thrown from a top of a building, initial velocity U = 0
Let g = 9.8m/s^2
Using third equation of motion
V^2 = U^2 + 2gH
Substitute all the parameters into the formula
V^2 = 2 × 9.8 × 100
V^2 = 200 × 9.8
V^2 = 1960
V = 44.27 m/s
Therefore, the magnitude of its velocity just before it strikes the ground is 44.3 m/s approximately
Answer:
a. Wgra=786.09J
b. 1.28m
Explanation:
The change in the potential energy is the work done by the gravitational force.
For this problem you have to take into account that the total work done is given by the change in the kinetic energy

Furthermore the total work is the contribution of the work done by the skater, the gravitational force and the friction

(a) by separating Wfric you have

(b) It is only necessary to use the expression for the work done by gravitational force

HOPE THIS HELPS!!