Answer:
52 rad
Explanation:
Using
Ф = ω't +1/2αt²................... Equation 1
Where Ф = angular displacement of the object, t = time, ω' = initial angular velocity, α = angular acceleration.
Since the object states from rest, ω' = 0 rad/s.
Therefore,
Ф = 1/2αt²................ Equation 2
make α the subject of the equation
α = 2Ф/t².................. Equation 3
Given: Ф = 13 rad, t = 2.5 s
Substitute into equation 3
α = 2(13)/2.5²
α = 26/2.5
α = 4.16 rad/s².
using equation 2,
Ф = 1/2αt²
Given: t = 5 s, α = 4.16 rad/s²
Substitute into equation 2
Ф = 1/2(4.16)(5²)
Ф = 52 rad.
 
        
                    
             
        
        
        
Answer:
(a) 0.345 T
(b) 0.389 T
Solution:
As per the question:
Hall emf, 
Magnetic Field, B = 0.10 T
Hall emf, 
Now,
Drift velocity, 

Now, the expression for the electric field is given by:
                            (1)
And

Thus eqn (1) becomes
 
where 
d = distance
                      (2)
(a) When 

(b) When 

 
        
             
        
        
        
An advertisement for an all-terrain vehicle (ATV) claims that the ATV can climb inclined slopes of 35°. The minimum coefficient of static friction needed for this claim to be possible is 0.7
In an inclined plane, the coefficient of static friction is the angle at which an object slide over another.  
As the angle rises, the gravitational force component surpasses the static friction force, as such, the object begins to slide.
Using the Newton second law;




N = mg cos θ
Equating both force component together, we have:



From trigonometry rule:

∴



Therefore, we can conclude that the minimum coefficient of static friction needed for this claim to be possible is 0.7
Learn more about static friction here:
brainly.com/question/24882156?referrer=searchResults
 
        
             
        
        
        
Answer:
AFter 3.5 s, the wagon is moving at:   
Explanation:
Let's start by finding first the net force on the wagon, and from there the wagon's acceleration (using Newton's 2nd Law):
Net force = 250 N + 178 N = 428 N
Therefore, the acceleration from Newton's 2nd Law is:

So now we apply this acceleration to the kinematic expression for velocity in an object moving under constant acceleration:
