Pretty sure just draw same line but a to r and b to s
When the number expression given as (2tens 1 one) x 10 is written in standard form, the standard form is 210 and the unit form is 2 hundred, and 1 ten
<h3>How to write the number in standard form?</h3>
The number expression is given as:
(2tens 1 one) x 10
2 tens is represented as:
2 * 10
1 one is represented as:
1 * 1
So, the number expression can be rewritten as:
(2tens 1 one) x 10 = (2 * 10 + 1 * 1) x 10
Evaluate the product
(2tens 1 one) x 10 = (20 + 1) x 10
Evaluate the sum
(2tens 1 one) x 10 = (21) x 10
Evaluate the product
(2tens 1 one) x 10 = 210
When the number expression given as (2tens 1 one) x 10 is written in standard form, the standard form is 210 and the unit form is 2 hundred, and 1 ten
Using the above steps as a guide, we have:
- (5 hundreds 5 tens) * 10 ⇒ 5 thousands and 5 hundreds ⇒ 5500
- (2 thousands 7 tens) / 10 ⇒ 2 hundreds and 7 units ⇒ 207
- (4 ten thousands 8 hundred) / 10 ⇒ 4 thousands and 8 tens ⇒ 4080
Read more about standard form at
brainly.com/question/19169731
#SPJ1
Given:
The two points are (-5,8) and (-3,1).
To find:
The distance between the given two points in simplest radical form.
Solution:
Distance formula: The distance between two points is

Using distance formula, the distance between (-5,8) and (-3,1) is





Therefore, the distance between two points (-5,8) and (-3,1) is
units.
Answer:
114.24°
Step-by-step explanation:
7(15)+6= 105
3(15)= 45, now we plug it in the formula, 

so now we square root it
= 114.24
Answer:
you need to draw a triangle of given dimensions
Step-by-step explanation:
if B is right angle triangle then you can assume that either AB or BC is base and other one is perpendicular. So that makes AC hypotenuse
so let's assume BC is base of 6 cm. so draw a base of 6 cm line , name it BC
then draw a 90 degree angle on B keeping BC as Base . now length of perpendicular would be 4.5 cm. this perpendicular would be AB
no join A and C . length of AC should be 7.5 cm. if it's not then something is wrong in given question.