Answer:
The density of solution is 1.283 g/mL.
Explanation:
Molarity of the KOH before dilution = 
Volume of the solution before dilution = 
Molarity of the KOH after dilution = 
Volume of the solution after dilution = 




(1 mL = 0.001 L)


Mass of 0.2076 moles of KOH:
0.2076 mol × 56 g/mol = 11.6256 g
Mass of KOH is solution = 11.6265 g
Mass of the solution = M
Mass percentage of solution = 30.0% of KOH

M = 38.755 g
Density of the solution , d= 

The density of solution is 1.283 g/mL.
Answer : The number of moles of gas present in container are 1.697 mole.
Explanation :
Using ideal gas equation,

where,
P = pressure of gas = 74 mmHg = 0.097 atm
conversion used : (1 atm = 760 mmHg)
V = volume of gas = 500.0 L
T = temperature of gas = 
n = number of moles of gas = ?
R = gas constant = 0.0821 L.atm/mole.K
Now put all the given values in the ideal gas equation, we get the number of moles of gas in the container.


Therefore, the number of moles of gas present in container are 1.697 mole.