Answer:
vr =
vp = 486.22 j + 205.9 j
Theta 
Step-by-step explanation:
The resultant velocity vr = vp + vw
vp = vector velocity of plane and
vw = vector velocity of wind
vr = vector resultant velocity
in one hour the plane travels 540 miles and hence the speed is 540 mph
Hence vr =
vp = 486.22 j + 205.9 j
Theta

Check the picture below, so the park looks more or less like so, with the paths in red, so let's find those midpoints.
![~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ J(\stackrel{x_1}{-3}~,~\stackrel{y_1}{1})\qquad K(\stackrel{x_2}{1}~,~\stackrel{y_2}{3}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{ 1 -3}{2}~~~ ,~~~ \cfrac{ 3 +1}{2} \right) \implies \left(\cfrac{ -2 }{2}~~~ ,~~~ \cfrac{ 4 }{2} \right)\implies JK=(-1~~,~~2) \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=~~~~~~~~~~~~%5Ctextit%7Bmiddle%20point%20of%202%20points%20%7D%20%5C%5C%5C%5C%20J%28%5Cstackrel%7Bx_1%7D%7B-3%7D~%2C~%5Cstackrel%7By_1%7D%7B1%7D%29%5Cqquad%20K%28%5Cstackrel%7Bx_2%7D%7B1%7D~%2C~%5Cstackrel%7By_2%7D%7B3%7D%29%20%5Cqquad%20%5Cleft%28%5Ccfrac%7B%20x_2%20%2B%20x_1%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%20y_2%20%2B%20y_1%7D%7B2%7D%20%5Cright%29%20%5C%5C%5C%5C%5C%5C%20%5Cleft%28%5Ccfrac%7B%201%20-3%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%203%20%2B1%7D%7B2%7D%20%5Cright%29%20%5Cimplies%20%5Cleft%28%5Ccfrac%7B%20-2%20%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%204%20%7D%7B2%7D%20%5Cright%29%5Cimplies%20JK%3D%28-1~~%2C~~2%29%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ L(\stackrel{x_1}{5}~,~\stackrel{y_1}{-1})\qquad M(\stackrel{x_2}{-1}~,~\stackrel{y_2}{-3}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{ -1 +5}{2}~~~ ,~~~ \cfrac{ -3 -1}{2} \right) \implies \left(\cfrac{ 4 }{2}~~~ ,~~~ \cfrac{ -4 }{2} \right)\implies LM=(2~~,~~-2) \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=~~~~~~~~~~~~%5Ctextit%7Bmiddle%20point%20of%202%20points%20%7D%20%5C%5C%5C%5C%20L%28%5Cstackrel%7Bx_1%7D%7B5%7D~%2C~%5Cstackrel%7By_1%7D%7B-1%7D%29%5Cqquad%20M%28%5Cstackrel%7Bx_2%7D%7B-1%7D~%2C~%5Cstackrel%7By_2%7D%7B-3%7D%29%20%5Cqquad%20%5Cleft%28%5Ccfrac%7B%20x_2%20%2B%20x_1%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%20y_2%20%2B%20y_1%7D%7B2%7D%20%5Cright%29%20%5C%5C%5C%5C%5C%5C%20%5Cleft%28%5Ccfrac%7B%20-1%20%2B5%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%20-3%20-1%7D%7B2%7D%20%5Cright%29%20%5Cimplies%20%5Cleft%28%5Ccfrac%7B%204%20%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%20-4%20%7D%7B2%7D%20%5Cright%29%5Cimplies%20LM%3D%282~~%2C~~-2%29%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

now, let's check the other path, JM and KL
![~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ J(\stackrel{x_1}{-3}~,~\stackrel{y_1}{1})\qquad M(\stackrel{x_2}{-1}~,~\stackrel{y_2}{-3}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{ -1 -3}{2}~~~ ,~~~ \cfrac{ -3 +1}{2} \right) \implies \left(\cfrac{ -4 }{2}~~~ ,~~~ \cfrac{ -2 }{2} \right)\implies JM=(-2~~,~~-1) \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=~~~~~~~~~~~~%5Ctextit%7Bmiddle%20point%20of%202%20points%20%7D%20%5C%5C%5C%5C%20J%28%5Cstackrel%7Bx_1%7D%7B-3%7D~%2C~%5Cstackrel%7By_1%7D%7B1%7D%29%5Cqquad%20M%28%5Cstackrel%7Bx_2%7D%7B-1%7D~%2C~%5Cstackrel%7By_2%7D%7B-3%7D%29%20%5Cqquad%20%5Cleft%28%5Ccfrac%7B%20x_2%20%2B%20x_1%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%20y_2%20%2B%20y_1%7D%7B2%7D%20%5Cright%29%20%5C%5C%5C%5C%5C%5C%20%5Cleft%28%5Ccfrac%7B%20-1%20-3%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%20-3%20%2B1%7D%7B2%7D%20%5Cright%29%20%5Cimplies%20%5Cleft%28%5Ccfrac%7B%20-4%20%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%20-2%20%7D%7B2%7D%20%5Cright%29%5Cimplies%20JM%3D%28-2~~%2C~~-1%29%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ K(\stackrel{x_1}{1}~,~\stackrel{y_1}{3})\qquad L(\stackrel{x_2}{5}~,~\stackrel{y_2}{-1}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{ 5 +1}{2}~~~ ,~~~ \cfrac{ -1 +3}{2} \right) \implies \left(\cfrac{ 6 }{2}~~~ ,~~~ \cfrac{ 2 }{2} \right)\implies KL=(3~~,~~1) \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=~~~~~~~~~~~~%5Ctextit%7Bmiddle%20point%20of%202%20points%20%7D%20%5C%5C%5C%5C%20K%28%5Cstackrel%7Bx_1%7D%7B1%7D~%2C~%5Cstackrel%7By_1%7D%7B3%7D%29%5Cqquad%20L%28%5Cstackrel%7Bx_2%7D%7B5%7D~%2C~%5Cstackrel%7By_2%7D%7B-1%7D%29%20%5Cqquad%20%5Cleft%28%5Ccfrac%7B%20x_2%20%2B%20x_1%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%20y_2%20%2B%20y_1%7D%7B2%7D%20%5Cright%29%20%5C%5C%5C%5C%5C%5C%20%5Cleft%28%5Ccfrac%7B%205%20%2B1%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%20-1%20%2B3%7D%7B2%7D%20%5Cright%29%20%5Cimplies%20%5Cleft%28%5Ccfrac%7B%206%20%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%202%20%7D%7B2%7D%20%5Cright%29%5Cimplies%20KL%3D%283~~%2C~~1%29%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

so the red path will be 
60min or 1 hour
Because 2km is equal to 2000m
Therefore you multiply 12 min by 5 (because 2000m x 5 is 10000m)
<h3>
Answer: D. 80% of the home’s value</h3>
============================================================
Explanation:
As you probably expect, the first number 80 refers to the percentage the first loan covers. If the house is say $100,000, then the first loan is $80,000 while the second loan is the remaining $20,000.
An 80/20 mortgage, or similar, will have two monthly payments because you are getting two mortgages bundled together. Usually you should pay a down payment, though it may likely depend on your credit history. Those with good credit will pay less or no down payment, compared to those with worse credit will have to pay more down payment. A good rule of thumb is that 20% of the home's value is made as down payment, though this isn't what the "20" in "80/20" is referring to.
An 80% down payment is extremely high and unreasonable. Not many people have that kind of money laying around. A similar story applies to a 20% interest rate which is incredibly large for a mortgage rate (typically they are in the single digits such as 3%).