Answer:
b. The number of electrons
Explanation:
A "neutral atom" has a <u>neutral charge</u>. This means that <em>its charge is equal to </em><em>zero. </em>In order for the charges to cancel out each other, the atom's <em>positive charge should be equal to the negative charge. </em>These being said, the number of electrons<em> (negatively-charged)</em> is then equal to the number of protons <em>(positively-charged). </em>Those atoms which are not neutral are called <em>"ions."</em> This means that they either have more or less electrons than the protons.
Answer:
1) 0 N
2) 8 N
Explanation:
The net force is the sum of all of the forces acting on the object.
For question 1, we can see that there is a force of 5 N acting to the right and 5 N acting to the left. If we define the right to be positive and the left to be negative, then the net force equals:
Fnet = 5N - 5N = 0 N
Therefore, the net force in question 1 is 0 N.
For question 2, the process is very similar. We want to find the sum of the forces acting on the object. In this case, there are forces of 3 N and 5 N acting to the right.
Fnet = 3 N + 5 N = 8 N
Therefore, the net force in question 2 is 8 N.
Hope this helps!
Answer:
Examples of complex compound include potassium ferrocyanide K4[Fe(CN)6] and potassium ferricyanide K3[Fe(CN)6]. Other examples include pentaamine chloro cobalt(III) chloride [Co(NH)5Cl]Cl2 and dichlorobis platinum(IV) nitrate [Pt(en)2Cl2](NO3)2.
Answer:
11.31 g.
Explanation:
Molarity is defined as the no. of moles of a solute per 1.0 L of the solution.
M = (no. of moles of solute)/(V of the solution (L)).
<em>∴ M = (mass/molar mass)of NaCl/(V of the solution (L)).</em>
<em></em>
<em>∴ mass of NaCl remained after evaporation of water = (M)(V of the solution (L))(molar mass)</em> = (0.45 M)(0.43 L)(58.44 g/mol) = <em>11.31 g.</em>