Answer:
Option B
Explanation:
The butter forms a new arrangement of atoms i.e from solid to liquid
Answer:
The greatest acceleration the man can give the airplane is 0.0059 m/s².
Explanation:
Given that,
Mass of man = 85 kg
Mass of airplane = 109000 kg
Distance = 9.08
Coefficient of static friction = 0.77
We need to calculate the greatest friction force
Using formula of friction
Where, m = mass of man
g = acceleration due to gravity
Put the value into the formula
We need to calculate the acceleration
Using formula of newton's second law
Put the value into the formula
Hence, The greatest acceleration the man can give the airplane is 0.0059 m/s².
Liquids<span> are not </span>packed<span> as tightly as </span>solids<span>. And gases are very loosely </span>packed<span>. The spacing of the molecules enables </span>sound<span> to travel much faster through a </span>solid<span> than a gas. </span>Sound<span> travels about four times faster and farther in water than it does in air.</span>
None of the choices is an appropriate response.
There's no such thing as the temperature of a molecule. Temperature and
pressure are both outside-world manifestations of the energy the molecules
have. But on the molecular level, what it is is the kinetic energy with which
they're all scurrying around.
When the fuel/air mixture is compressed during the compression stroke,
the temperature is raised to the flash point of the mixture. The work done
during the compression pumps energy into the molecules, their kinetic
energy increases, and they begin scurrying around fast enough so that
when they collide, they're able to stick together, form a new molecule,
and release some of their kinetic energy in the form of heat.