Iron is a magnetic metal, and it is essential to the Earth's magnetic field!
Essentially it "records" (stores the information, maintains) the direction and orientation of the magnetic field.
Among others, the magnetic field protects the Earth from dangerous cosmic rays.
So this is easy to calculate when you split the velocity into x and y components. The x component is going to equal cos(53) * 290 and the y component is going to equal sin(53)*290.
The x location therefore is 290*cos(53)*35 = 6108.4m
The y location needs to factor in the downwards acceleration of gravity too, which is 9.81m/s^2. We need the equation dist. = V initial*time + 0.5*acceleration*time^2.
This gives us d=290*sin(53)*35 + (0.5*-9.81*35^2)=2097.5m
So your (x,y) coordinates equals (6108.4, 2097.5)
Answer:
Explanation:
The Balmer series in a hydrogen atom relates the possible electron transitions down to the n = 2 position to the wavelength of the emission that scientists observe. In quantum physics, when electrons transition between different energy levels around the atom (described by the principal quantum number, n) they either release or absorb a photon. The Balmer series describes the transitions from higher energy levels to the second energy level and the wavelengths of the emitted photons. You can calculate this using the Rydberg formula.
Answer:
The value is
Explanation:
From the question we are told that
The power output from the sun is 
The average wavelength of each photon is 
Generally the energy of each photon emitted is mathematically represented as

Here h is the Plank's constant with value 
c is the speed of light with value 
So
=>
Generally the number of photons emitted by the Sun in a second is mathematically represented as

=> 
=>
Answer:
a= - 0.79 m/s²
Explanation:
Given that
Speed ,u = 20 mi/h
We know that
1 mi/h= 0.44 m/s
Therefore ,u = 8.94 m/s
Distance ,s= 50 m
Lets take the acceleration of the car = a m/s²
The final speed of the car ,v = 0 m/s
We know that
v²= u² + 2 a s
Now by putting the values
0²= 8.94² + 2 x a x 50

a= - 0.79 m/s²
Therefore the acceleration will be - 0.79 m/s².