1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ipn [44]
2 years ago
6

Pls Help This is Due Soon (4/27): The following ordered pairs from a linear function: (-5,-7), (-2, 2), (3, 17), (7, 29), аnd (1

2, 44). What is the y-intercept of the
function? *
-7
7
0 8​
Mathematics
2 answers:
erastovalidia [21]2 years ago
6 0

Answer:

8 because this is a linear function meaning that it is being added by a certain number. If you find the slope  using the formula x2-x1/ y1-y2 you would get 3. If you add 3 for every term starting from -5 until you get to 0.

lesantik [10]2 years ago
4 0

-7 ur welcome  

can you please mark me as brainlist

You might be interested in
Can someone help me with this question
Mashcka [7]
The correct answer here would be D. -1(3x+1)(x+5). You can find this answer by redistributing the problem.

-1(3x+1)(x+5)
-1(3x²+15x+1x+5)
-1(3x²+16x+5)
-3x²-16x-5

Using the math above, we can see that when we redistribute we get the original equation. That makes Choice D correct.
5 0
3 years ago
What is all of the surface area and volume of this Castle? Find the surface area and volume of all the figures below, then out o
motikmotik

Answer:

Step-by-step explanation:

There are a few formulas that are useful for this:

  • lateral area of a pyramid or cone: LA = 1/2·Ph, where P is the perimeter and h is the slant height
  • lateral area of a cylinder: LA = π·dh, where d is the diameter and h is the height
  • area of a rectangle: A = lw, where l is the length and w is the width
  • volume of a cone or pyramid: V = 1/3·Bh, where B is the area of the base and h is the height
  • volume of a cylinder or prism: V = Bh, where B is the area of the base and h is the height

You will notice that for lateral area purposes, a pyramid or cone is equivalent to a prism or cylinder of height equal to half the slant height. And for volume purposes, the volume of a pyramid or cone is equal to the volume of a prism or cylinder with the same base area and 1/3 the height.

Since the measurements are given in cm, we will use cm for linear dimensions, cm^2 for area, and cm^3 for volume.

___

The heights of the cones at the top of the towers can be found from the Pythagorean theorem.

  (slant height)^2 = (height)^2 + (radius)^2

  height = √((slant height)^2 - (radius)^2) = √(10^2 -5^2) = √75 = 5√3

The heights of the pyramids can be found the same way.

  height = √(13^2 -2^2) = √165

___

<u>Area</u>

The total area of the castle will be ...

  total castle area = castle lateral area + castle base area

These pieces of the total area are made up of sums of their own:

  castle lateral area = cone lateral area + pyramid lateral area + cylinder lateral area + cutout prism lateral area

and ...

  castle base area = cylinder base area + cutout prism base area

So, the pieces of area we need to find are ...

  • cone lateral area (2 identical cones)
  • pyramid lateral area (2 identical pyramids)
  • cylinder lateral area (3 cylinders, of which 2 are the same)
  • cutout prism lateral area
  • cylinder base area (3 cylinders of which 2 are the same)
  • cutout prism base area

Here we go ...

Based on the above discussion, we can add 1/2 the slant height of the cone to the height of the cylinder and figure the lateral area of both at once:

  area of one cone and cylinder = π·10·(18 +10/2) = 230π

  area of cylinder with no cone = top area + lateral area = π·1^2 +π·2·16 = 33π

  area of one pyramid = 4·4·(13/2) = 52

The cutout prism outside face area is equivalent to the product of its base perimeter and its height, less the area of the rectangular cutouts at the top of the front and back, plus the area of the inside faces (both vertical and horizontal).

  outside face area = 2((23+4)·11 -3·(23-8)) = 2(297 -45) = 504

  inside face area = (3 +(23-8) +3)·4 = 84

So the lateral area of the castle is ...

  castle lateral area = 2(230π + 52) +33π + 504 + 84 = 493π +692

  ≈ 2240.805 . . . . cm^2

The castle base area is the area of the 23×4 rectangle plus the areas of the three cylinder bases:

  cylinder base area = 2(π·5^2) + π·1^2 = 51π

  prism base area = 23·4 = 92

  castle base area = 51π + 92 ≈ 252.221 . . . . cm^2

Total castle area = (2240.805 +252.221) cm^2 ≈ 2493.0 cm^2

___

<u>Volume</u>

The total castle volume will be ...

  total castle volume = castle cylinder volume + castle cone volume + castle pyramid volume + cutout prism volume

As we discussed above, we can combine the cone and cylinder volumes by using 1/3 the height of the cone.

  volume of one castle cylinder and cone = π(5^2)(18 + (5√3)/3)

  = 450π +125π/√3 ≈ 1640.442 . . . . cm^3

 volume of flat-top cylinder = π·1^2·16 = 16π ≈ 50.265 . . . . cm^3

The volume of one pyramid is ...

  (1/2)4^2·√165 = 8√165 ≈ 102.762 . . . . cm^3

The volume of the entire (non-cut-out) castle prism is the product of its base area and height:

  non-cutout prism volume = (23·4)·11 = 1012 . . . . cm^3

The volume of the cutout is similarly the product of its dimensions:

  cutout volume = (23 -8)·4·3 = 180 . . . . cm^3

so, the volume of the cutout prism is ...

  cutout prism volume = non-cutout prism volume - cutout volume

  = 1012 -180 = 832 . . . .  cm^3

Then the total castle volume is ...

  total castle volume = 2·(volume of one cylinder and cone) + (volume of flat-top cylinder) +2·(volume of one pyramid) +(cutout prism volume)

  = 2(1640.442) + 50.265 +2(102.762) +832 ≈ 4368.7 . . . . cm^3

4 0
3 years ago
Because of their connection with secant​ lines, tangents, and instantaneous​ rates, limits of the form ModifyingBelow lim With h
Gre4nikov [31]

Answer:

\dfrac{1}{2\sqrt{x}}

Step-by-step explanation:

f(x) = \sqrt{x} = x^{\frac{1}{2}}

f(x+h) = \sqrt{x+h} = (x+h)^{\frac{1}{2}}

We use binomial expansion for (x+h)^{\frac{1}{2}}

This can be rewritten as

[x(1+\dfrac{h}{x})]^{\frac{1}{2}}

x^{\frac{1}{2}}(1+\dfrac{h}{x})^{\frac{1}{2}}

From the expansion

(1+x)^n=1+nx+\dfrac{n(n-1)}{2!}+\ldots

Setting x=\dfrac{h}{x} and n=\frac{1}{2},

(1+\dfrac{h}{x})^{\frac{1}{2}}=1+(\dfrac{h}{x})(\dfrac{1}{2})+\dfrac{\frac{1}{2}(1-\frac{1}{2})}{2!}(\dfrac{h}{x})^2+\tldots

=1+\dfrac{h}{2x}-\dfrac{h^2}{8x^2}+\ldots

Multiplying by x^{\frac{1}{2}},

x^{\frac{1}{2}}(1+\dfrac{h}{x})^{\frac{1}{2}}=x^{\frac{1}{2}}+\dfrac{h}{2x^{\frac{1}{2}}}-\dfrac{h^2}{8x^{\frac{3}{2}}}+\ldots

x^{\frac{1}{2}}(1+\dfrac{h}{x})^{\frac{1}{2}}-x^{\frac{1}{2}}=\dfrac{h}{2x^{\frac{1}{2}}}-\dfrac{h^2}{8x^{\frac{3}{2}}}+\ldots

\dfrac{x^{\frac{1}{2}}(1+\dfrac{h}{x})^{\frac{1}{2}}-x^{\frac{1}{2}}}{h}=\dfrac{1}{2x^{\frac{1}{2}}}-\dfrac{h}{8x^{\frac{3}{2}}}+\ldots

The limit of this as h\to 0 is

\lim_{h\to0} \dfrac{f(x+h)-f(x)}{h}=\dfrac{1}{2x^{\frac{1}{2}}}=\dfrac{1}{2\sqrt{x}} (since all the other terms involve h and vanish to 0.)

8 0
3 years ago
The volume of a sphere is two-thirds of a cylinder. What is the volume of a cylinder that has the same diameter as a sphere with
sattari [20]

Answer:

V_2= \frac{28}{3} u^3

Step-by-step explanation:

Given

Represent the volume of the cylinder with V1 and the volume of the sphere with V2

So, from the first statement: we have:

V_2 =\frac{2}{3}V_1

and

V_1 = 14u^3

To solve for V_2, we simply substitute 14u^3 for V_1 in V_2 =\frac{2}{3}V_1

V_2 =\frac{2}{3}V_1

V_2= \frac{2}{3} * 14u^3

V_2= \frac{2* 14}{3} u^3

V_2= \frac{28}{3} u^3

Hence, the volume of the sphere is \frac{28}{3} u^3

5 0
2 years ago
Find the least common multiple of (5x+15) and (3x+9)
JulsSmile [24]
X and 3 is the answer i think
5 0
3 years ago
Read 2 more answers
Other questions:
  • I'm Stuck with these question, can i get some help?
    13·1 answer
  • What are the vertical and horizontal asymptotes for the function f(x)= 3x^2 over x^2 - 4
    5·1 answer
  • Yeah ya boy just needs some help because I’m not good with word problems
    12·2 answers
  • A second grade student is 4 feet tall. Her teacher is 5 2/3 feet tall. How many times as tall as the student is the teacher
    13·1 answer
  • Form the union for the following sets m={} n={6,7,8,9,10}
    6·1 answer
  • 7 x 3/4
    8·1 answer
  • MY
    11·1 answer
  • GIVING BRAINLIEST!! HELP PLEASE!! you don't have to make it perfect. (no links/spam/or stealing points. i will report your accou
    8·1 answer
  • 9 less than a number can be written as
    11·2 answers
  • Evaluate the expression ​
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!