Answer:
The rotational kinetic energy takes 0.430 seconds to become half its initial value.
Explanation:
By the Principle of Energy Conservation and the Work-Energy Theorem we know that flywheel slow down due to the action of non-conservative forces (i.e. friction), the energy losses are equal to the change in the rotational kinetic energy. That is:
(1)
Where:
- Energy losses, measured in joules.
,
- Initial and final rotational kinetic energies, measured in joules.
By definition of rotational kinetic energy, we expand the equation above:
(2)
Where:
- Moment of inertia of the flywheel, measured in kilograms per square meter.
,
- Initial and final angular speed, measured in radians per second.
If we know that
,
and
, then the initial angular speed is:
(3)
![\omega_{1}=\sqrt{\frac{2\cdot K_{1}}{I} }](https://tex.z-dn.net/?f=%5Comega_%7B1%7D%3D%5Csqrt%7B%5Cfrac%7B2%5Ccdot%20K_%7B1%7D%7D%7BI%7D%20%7D)
![\omega_{1} = \sqrt{\frac{2\cdot (30\,J)}{18\,kg\cdot m^{2}} }](https://tex.z-dn.net/?f=%5Comega_%7B1%7D%20%3D%20%5Csqrt%7B%5Cfrac%7B2%5Ccdot%20%2830%5C%2CJ%29%7D%7B18%5C%2Ckg%5Ccdot%20m%5E%7B2%7D%7D%20%7D)
![\omega_{1} \approx 1.825\,\frac{rad}{s}](https://tex.z-dn.net/?f=%5Comega_%7B1%7D%20%5Capprox%201.825%5C%2C%5Cfrac%7Brad%7D%7Bs%7D)
![\omega_{1}\approx 0.291\,\frac{rev}{s}](https://tex.z-dn.net/?f=%5Comega_%7B1%7D%5Capprox%200.291%5C%2C%5Cfrac%7Brev%7D%7Bs%7D)
(4)
![\omega_{2}=\sqrt{\frac{2\cdot K_{2}}{I} }](https://tex.z-dn.net/?f=%5Comega_%7B2%7D%3D%5Csqrt%7B%5Cfrac%7B2%5Ccdot%20K_%7B2%7D%7D%7BI%7D%20%7D)
![\omega_{2} = \sqrt{\frac{2\cdot (15\,J)}{18\,kg\cdot m^{2}} }](https://tex.z-dn.net/?f=%5Comega_%7B2%7D%20%3D%20%5Csqrt%7B%5Cfrac%7B2%5Ccdot%20%2815%5C%2CJ%29%7D%7B18%5C%2Ckg%5Ccdot%20m%5E%7B2%7D%7D%20%7D)
![\omega_{2} \approx 1.291\,\frac{rad}{s}](https://tex.z-dn.net/?f=%5Comega_%7B2%7D%20%5Capprox%201.291%5C%2C%5Cfrac%7Brad%7D%7Bs%7D)
![\omega_{2} \approx 0.205\,\frac{rev}{s}](https://tex.z-dn.net/?f=%5Comega_%7B2%7D%20%5Capprox%200.205%5C%2C%5Cfrac%7Brev%7D%7Bs%7D)
Under the assumption that flywheel is decelerating uniformly, we get that the time taken for the flywheel to slowdown is:
(5)
If we know that
,
and
, then the time needed is:
![t = \frac{0.205\,\frac{rev}{s}-0.291\,\frac{rev}{s}}{-0.200\,\frac{rev}{s^{2}} }](https://tex.z-dn.net/?f=t%20%3D%20%5Cfrac%7B0.205%5C%2C%5Cfrac%7Brev%7D%7Bs%7D-0.291%5C%2C%5Cfrac%7Brev%7D%7Bs%7D%7D%7B-0.200%5C%2C%5Cfrac%7Brev%7D%7Bs%5E%7B2%7D%7D%20%7D)
![t = 0.43\,s](https://tex.z-dn.net/?f=t%20%3D%200.43%5C%2Cs)
The rotational kinetic energy takes 0.430 seconds to become half its initial value.