Answer:
Technician A
Explanation:
If Technician B was correct, and the master cylinder is defective - then no braking action would occur.
This is not true however, as some breaking action eventually occurs, meaning it must be out of adjustment.
<span>On the scale the only external forces are the man's weight acting downwards and the normal force which the scale exerts back to support his weight.
So F = Ma = mg + Fs
The normal force Fs (which is actually the reading on the scale) = Ma + Mg
But a = 0
So Fs = Mg which is just his weight.
Fs = 75 * 9.8 = 735N</span>
Answer: 529.9 Hz
Explanation:
Here we need to use the Doppler equation, so we have:
f' = f*(v + v0)/(v - vs)
Here, f is the frequency = 500Hz
v is the velocity of the wave, = 334m/s
v0 is the velocity of the observer = 20m/s
vs is the velocity of the source = 0m/s
Then we have:
f' = 500Hz*(334m/s + 20m/s)/(334m/s) = 529.9 Hz
Answer:
Explanation:
Force = mass * acceleration.