Answer: Because temperature is a measure of the average kinetic energy of the atoms or molecules in the system. The zeroth law of thermodynamics says that no heat is transferred between two objects in thermal equilibrium; therefore, they are the same temperature.
Explanation:9 (- _ -)
Answer:
I beleive it would shoot very far up into the sky
Explanation:
Answer:
a) x = 8.8 cm * cos (9.52 rad/s * t)
b) x = 8.45 cm
Explanation:
This is a Simple Harmonic Motion, and most Simple Harmonic Motion equations start from the equilibrium point. In this question however, we are starting from the max displacement the equations, and thus, it ought to be different.
From the question, we are given that
A = 8.8 cm = 0.088 m
t = 0.66 s
Now, we need to find the angular speed w, such that
w = 2π/T
w = (2 * 3.142) / 0.66
w = 6.284 / 0.66
w = 9.52 rad/s
The displacement equation of Simple Harmonic Motion is usually given as
x = A*sin(w*t)
But then, the equation starts from the equilibrium point at 0 sec, i.e x = 0 m
When you have to start from the max displacement, then the equation would be
x = A*cos(w*t).
So when t = 0 the cos(0) = 1, and then x = A which is max displacement.
Thus, the equation is
x = 8.8 cm * cos (9.52 rad/s * t)
At t = 1.7 s,
x = 8.8 cos (9.52 * 1.7)
x = 8.8 cos (16.184)
x = -8.45 cm
Before swinging, T has only potential energy, (no speed)
Ui = mgh
Where h is the vertical displacement of T
From the laws of geometry,
cos45 = (L-h)/L
cos45 = 1-h/L
h/L = 1-cos45
h = L(1-cos45)
Therefore
Ui = mgL(1-cos45)
Proceeding the same way,
Twill raise to aheight of h' due to swing
h' = L(1-cos30)
The PE of T after swing is
Uf = mgh'
Uf = mgL(1-cos30)
Along with the PE , T has some kinetic energy results due to the moment.
Tf = 0.5*mv^2
According to the law of conservation of energy,
Ui = Uf+Tf
mgL(1-cos45) = mgL(1-cos30) + 0.5*mv^2
gL(co30-cos45) = 0.5*v^2
9.8*20*(co30-cos45) = 0.5*V^2
v = 7.89 m/s
<span>The speed f T after swing is 7.89 m/s</span>