Answer:
mass of the second ball is 0.379m
Explanation:
Given;
mass of first ball = m
let initial velocity of first ball = u₁
let final velocity of first ball = v₁ = 0.45u₁
let the mass of the second ball = m₂
initial velocity of the second ball, u₂ = 0
let the final velocity of the second ball = v₂
Apply the principle of conservation of linear momentum;
mu₁ + m₂u₂ = mv₁ + m₂v₂
mu₁ + 0 = 0.45u₁m + m₂v₂
mu₁ = 0.45u₁m + m₂v₂ -------- equation (i)
Velocity for elastic collision in one dimension;
u₁ + v₁ = u₂ + v₂
u₁ + 0.45u₁ = 0 + v₂
1.45u₁ = v₂ (final velocity of the second ball)
Substitute in v₂ into equation (i)
mu₁ = 0.45u₁m + m₂(1.45u₁)
mu₁ = 0.45u₁m + 1.45m₂u₁
mu₁ - 0.45u₁m = 1.45m₂u₁
0.55mu₁ = 1.45m₂u₁
divide both sides by u₁
0.55m = 1.45m₂
m₂ = 0.55m / 1.45
m₂ = 0.379m
Therefore, mass of the second ball is 0.379m (where m is mass of the first ball)
Answer:
the rotational inertia of the cylinder = 4.85 kgm²
the mass moved 7.942 m/s
Explanation:
Formula for calculating Inertia can be expressed as:

For calculating the rotational inertia of the cylinder ; we have;




I ≅ 4.85 kgm²
mg - T ma and RT = I ∝
T = 


a = 4.1713 m/s²
Using the equation of motion

Answer:
the work done by the 30N force is 4156.92 J.
For this problem, they don´t ask you to determine the work of the total force applied in the block. They only want the work done for the force of 30N, with an angle of 30º respectively of the displacement and a traveled distance of 160m. So:
W=F·s·cos(α)=30N·160m·cos(30º)=4156.92J
Answer: the correct option is B ( on the half of the road that the vehicle is traveling).
Explanation: according to Georgia Code About Pedestrians; The driver must stop and remain stopped to let a pedestrian cross at a crosswalk when the pedestrian is
on the half of the road that the vehicle is traveling.