Answer:
- Mass of monobasic sodium phosphate = 1.857 g
- Mass of dibasic sodium phosphate = 1.352 g
Explanation:
<u>The equilibrium that takes place is:</u>
H₂PO₄⁻ ↔ HPO₄⁻² + H⁺ pka= 7.21 (we know this from literature)
To solve this problem we use the Henderson–Hasselbalch (<em>H-H</em>) equation:
pH = pka + ![log\frac{[A^{-} ]}{[HA]}](https://tex.z-dn.net/?f=log%5Cfrac%7B%5BA%5E%7B-%7D%20%5D%7D%7B%5BHA%5D%7D)
In this case [A⁻] is [HPO₄⁻²], [HA] is [H₂PO₄⁻], pH=7.0, and pka = 7.21
If we use put data in the <em>H-H </em>equation, and solve for [HPO₄⁻²], we're left with:
![7.0=7.21+log\frac{[HPO4^{-2} ]}{[H2PO4^{-} ]}\\ -0.21=log\frac{[HPO4^{-2} ]}{[H2PO4^{-} ]}\\\\10^{-0.21} =\frac{[HPO4^{-2} ]}{[H2PO4^{-} ]}\\0.616 * [H2PO4^{-}] = [HPO4^{-2}]](https://tex.z-dn.net/?f=7.0%3D7.21%2Blog%5Cfrac%7B%5BHPO4%5E%7B-2%7D%20%5D%7D%7B%5BH2PO4%5E%7B-%7D%20%5D%7D%5C%5C%20-0.21%3Dlog%5Cfrac%7B%5BHPO4%5E%7B-2%7D%20%5D%7D%7B%5BH2PO4%5E%7B-%7D%20%5D%7D%5C%5C%5C%5C10%5E%7B-0.21%7D%20%3D%5Cfrac%7B%5BHPO4%5E%7B-2%7D%20%5D%7D%7B%5BH2PO4%5E%7B-%7D%20%5D%7D%5C%5C0.616%20%2A%20%5BH2PO4%5E%7B-%7D%5D%20%3D%20%5BHPO4%5E%7B-2%7D%5D)
From the problem, we know that [HPO₄⁻²] + [H₂PO₄⁻] = 0.1 M
We replace the value of [HPO₄⁻²] in this equation:
0.616 * [H₂PO₄⁻] + [H₂PO₄⁻] = 0.1 M
1.616 * [H₂PO₄⁻] = 0.1 M
[H₂PO₄⁻] = 0.0619 M
With the value of [H₂PO₄⁻] we can calculate [HPO₄⁻²]:
[HPO₄⁻²] + 0.0619 M = 0.1 M
[HPO₄⁻²] = 0.0381 M
With the concentrations, the volume and the molecular weights, we can calculate the masses:
- Molecular weight of monobasic sodium phosphate (NaH₂PO₄)= 120 g/mol.
- Molecular weight of dibasic sodium phosphate (Na₂HPO₄)= 142 g/mol.
- mass of NaH₂PO₄ = 0.0619 M * 0.250 L * 120 g/mol = 1.857 g
- mass of Na₂HPO₄ = 0.0381 M * 0.250 L * 142 g/mol = 1.352 g