1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vlad1618 [11]
3 years ago
15

Look around and write down two or three examples of matter and energy that you observe.

Chemistry
1 answer:
Citrus2011 [14]3 years ago
5 0
Everything is made of matter, so anything you see will do for the matter portion. If you have a water bottle sitting on a desk, that has potential energy, and if you have a dog thats running and such, it has kinetic energy. I hope this helps!
You might be interested in
In the summer of 1859, Edwin Drake became the first person to strike oil in the United States while drilling in Titusville,_____
Nata [24]
C.Pennsylvania Titusville is in the state of Pennsylvania
7 0
3 years ago
Read 2 more answers
How many moles are in 155 grams of aluminum
Aliun [14]

Answer:

wads

Explanation:

wadsdw

8 0
3 years ago
Which of the following possess the greatest concentration of hydroxide ions?
jek_recluse [69]

Answer : The correct option is (d) a solution of 0.10 M NaOH

Explanation :

<u>(a) a solution of pH 3.0</u>

First we have to calculate the pOH.

pH+pOH=14\\\\pOH=14-pH\\\\pOH=14-3.0=11

Now we have to calculate the OH^- concentration.

pOH=-\log [OH^-]

11=-\log [OH^-]

[OH^-]=1.0\times 10^{-11}M

Thus, the OH^- concentration is, 1.0\times 10^{-11}M

<u>(b) a solution of 0.10 M NH_3</u>

As we know that 1 mole of NH_3 is a weak base. So, in a solution it will not dissociates completely.

So, the OH^- concentration will be less than 0.10 M

<u>(c) a solution with a pOH of 12.</u>

We have to calculate the OH^- concentration.

pOH=-\log [OH^-]

12=-\log [OH^-]

[OH^-]=1.0\times 10^{-12}M

Thus, the OH^- concentration is, 1.0\times 10^{-12}M

<u>(d) a solution of 0.10 M NaOH</u>

As we know that NaOH is a strong base. So, it dissociates to give Na^+ ion and OH^- ion.

So, 0.10 M of NaOH in a solution dissociates to give 0.10 M of Na^+ ion and 0.10 M of OH^- ion.

Thus, the OH^- concentration is, 0.10 M

<u>(e) a 1\times 10^{-4}M solution of HNO_2</u>

As we know that 1 mole of HNO_2 in a solution dissociates to give 1 mole of H^+ ion and 1 mole of NO_2^- ion.

So, 1\times 10^{-4}M of HNO_2 in a solution dissociates to give 1\times 10^{-4}M of H^+ ion and 1\times 10^{-4}M of NO_2^- ion.

The concentration of H^+ ion is 1\times 10^{-4}M

First we have to calculate the pH.

pH=-\log [H^+]

pH=-\log (1.0\times 10^{-4})

pH=4

Now we have to calculate the pOH.

pH+pOH=14\\\\pOH=14-pH\\\\pOH=14-4=10

Now we have to calculate the OH^- concentration.

pOH=-\log [OH^-]

10=-\log [OH^-]

[OH^-]=1.0\times 10^{-10}M

Thus, the OH^- concentration is, 1.0\times 10^{-10}M

From this we conclude that, a solution of 0.10 M NaOH possess the greatest concentration of hydroxide ions.

Hence, the correct option is (d)

3 0
3 years ago
A mouse is placed in a sealed chamber with air at 769.0 torr. This chamber is equipped with enough solid KOH to absorb any CO2 a
svlad2 [7]

<u>Answer:</u> The amount of oxygen gas consumed by mouse is 0.202 grams.

<u>Explanation:</u>

We are given:

Initial pressure of air = 769.0 torr

Final pressure of air = 717.1 torr

Pressure of oxygen = Pressure decreased = Initial pressure - Final pressure = (769.0 - 717.1) torr = 51.9 torr

To calculate the amount of oxygen gas consumed, we use the equation given by ideal gas which follows:

PV=nRT

where,

P = pressure of the gas = 51.9 torr

V = Volume of the gas = 2.20 L

T = Temperature of the gas = 292 K

R = Gas constant = 62.364\text{ L. Torr }mol^{-1}K^{-1}

n = number of moles of oxygen gas = ?

Putting values in above equation, we get:

51.9torr\times 2.20L=n\times 62.364\text{ L. Torr }mol^{-1}K^{-1}\times 292K\\\\n=\frac{51.9\times 2.20}{62.364\times 292}=0.0063mol

To calculate the mass from given number of moles, we use the equation:

\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}

Moles of oxygen gas = 0.0063 moles

Molar mass of oxygen gas = 32 g/mol

Putting values in above equation, we get:

0.0063mol=\frac{\text{Mass of oxygen gas}}{32g/mol}\\\\\text{Mass of oxygen gas}=(0.0063mol\times 32g/mol)=0.202g

Hence, the amount of oxygen gas consumed by mouse is 0.202 grams.

5 0
2 years ago
What is the wavelength of the matter wave associated with an electron (me= 9.1 x 10-31 kg) moving with a speed of 2.5 x 107 m/s?
Novay_Z [31]
Lambda = h\ Mv
lambda = 6.624 x 10^-34 / 9.1 x 10^-31 x 2.5 x 10^7
lambda = 2.9 x 10^-11 is your wavelength
3 0
3 years ago
Other questions:
  • Is boiling water considered physical or chemical bond
    11·1 answer
  • Water is a source of ______________ for chemical reactions in cells.
    8·1 answer
  • Which of the following compounds in the main group is a metalloid?
    6·2 answers
  • What is the concentration of Agt in a 1.2 x 10-4 solution of Ag2CO3? (To write your answer using scientific notation use 1.0E-1
    9·1 answer
  • When calcium carbonate is heated, it produces calcium oxide and carbon dioxide. The equation for the reaction is CaCO3(s) CaO(s)
    14·1 answer
  • Not a very good question but if anyone is good at chemistry, can you leave some tips below? I'm having lots of trouble in that s
    13·1 answer
  • Heat is most closely related to which kind of energy?<br>​
    8·2 answers
  • Explain how light is produced in neon signs.
    9·2 answers
  • Which observation most likely indicates that only a chemical change has taken place
    9·1 answer
  • Please explain:) I would really appreciate a step by step explanation if possible.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!