Answer:
9 protons
Explanation:
By looking at the periodic table, you will see that Fluorine has 9 protons. Since the number of electrons equal the number of protons, Fluorine has 9 electrons as well. Meanwhile, it's mass number of 19, minus 10 neutrons, gives you 9 protons or electrons. Hence, the atom would be Fluorine.
hope u make me brainlesst ʘ‿ʘ
Answer:
0.005 M
Explanation:
Given data:
volume of sample solution ( volume of D ) = 5.0 mL
volume of added stock solution ( V1 ) = 5.0 mL
concentration of added stock solution ( N1 ) = 0.02 M
Total volume of concentration ( V2 )= 10 mL = ( 5.0 mL + 5.0mL)
concentration of Total volume of sample ( C2 ) = 0.01
N2 = ( N1V1 ) / V2
= ( 0.02 * 5 ) / 10 = 0.01 m
absorbance of sample solution ( A1 ) = 0.10
absorbance of additional sample solution ( A2 ) = 0.20
attached below is the remaining part of the detailed solution
This layer also contains ratios of nitrogen and oxygen similar to the troposphere, except the concentrations are 1000 times less and there is little water vapor there, so the air is too thin for weather to occur. The thermosphere is the uppermost layer of the atmosphere.
I don't know exactly but you can try narrowing down your answers down to A or D but it might be D if the system is random if that even helps and makes sense-
Explanation:
Considering the Henderson- Hasselbalch equation for the calculation of the pH of the buffer solution as:
pH=pKa+log[base]/[acid]
When the the concentrations of both buffer components (the weak acid and its conjugate base) are equal:
[base] = [acid]
So, pH=pKa+log1 = pKa
<u>pH is equal to pKa of weak acid of buffer system
.</u>
When buffer contains more of weak acid than conjugate base:
[base] < [acid]
log [base]/[acid] = Negative,
So,
<u>When more of acid component is present, the pH is more acidic. (It decreases)</u>
When buffer contains more of conjugate base than weak acid:
[base] > [acid]
log [base]/[acid] = Positive,
So,
<u>When more of acid component is present, the pH is more acidic. (It increases)</u>