Answer:
Correct sentence: gravitational potential energy of the mass on the hook.
Explanation:
The mechanical energy of a body or a physical system is the sum of its kinetic energy and potential energy. It is a scalar magnitude related to the movement of bodies and to forces of mechanical origin, such as gravitational force and elastic force, whose main exponent is Hooke's Law. Both are conservative forces. The mechanical energy associated with the movement of a body is kinetic energy, which depends on its mass and speed. On the other hand, the mechanical energy of potential origin or potential energy, has its origin in the conservative forces, comes from the work done by them and depends on their mass and position. The principle of conservation of energy relates both energies and expresses that the sum of both energies, the potential energy and the kinetic energy of a body or a physical system, remains constant. This sum is known as the mechanical energy of the body or physical system.
Therefore, the kinetic energy of the block comes from the transformation in this of the gravitational potential energy of the suspended mass as it loses height with respect to the earth, keeping the mechanical energy of the system constant.
The frequency of the
scattered photon decreases or it will be lower compare to the frequency of
incident photon. An x-ray photon scatters in one direction after a collision
and some energy is transferred to the electron as it recoils in another
direction resulting to have less energy in the scattered photon. In addition, the
frequencies will also depend on the differences of the angle at which the
scattered photon leaves the collision and this incident is called Compton Effect.
Answer:
Water is more dense than air. When water goes through a denser thing, the light is "bent" more towards the "normal" which is a straight, vertical line.
Follow me on i n s t a g r a m, message me and I'll follow you back: ifaulkner24
I think the correct answer from the choices listed above is the second option. For endothermic reactions, the reactants have less energy than the products. Which would mean that energy should be added to the reaction for it to proceed. Hope this answers the question.