1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GuDViN [60]
3 years ago
12

2. Write an expression for the work

Physics
1 answer:
JulsSmile [24]3 years ago
6 0

Answer:

work  done=Fs

Explanation:

F : force

s : displacement

by definition

You might be interested in
The 1.53-kg uniform slender bar rotates freely about a horizontal axis through O. The system is released from rest when it is in
OlgaM077 [116]

Answer:

The spring constant = 104.82 N/m

The angular velocity of the bar when θ = 32° is 1.70 rad/s

Explanation:

From the diagram attached below; we use the conservation of energy to determine the spring constant by using to formula:

T_1+V_1=T_2+V_2

0+0 = \frac{1}{2} k \delta^2 - \frac{mg (a+b) sin \ \theta }{2}  \\ \\ k \delta^2 = mg (a+b) sin \ \theta \\ \\ k = \frac{mg(a+b) sin \ \theta }{\delta^2}

Also;

\delta = \sqrt{h^2 +a^2 +2ah sin \ \theta} - \sqrt{h^2 +a^2}

Thus;

k = \frac{mg(a+b) sin \ \theta }{( \sqrt{h^2 +a^2 +2ah sin \ \theta} - \sqrt{h^2 +a^2})^2}

where;

\delta = deflection in the spring

k = spring constant

b = remaining length in the rod

m = mass of the slender bar

g = acceleration due to gravity

k = \frac{(1.53*9.8)(0.6+0.2) sin \ 64 }{( \sqrt{0.6^2 +0.6^2 +2*0.6*0.6 sin \ 64} - \sqrt{0.6^2 +0.6^2})^2}

k = 104.82\ \  N/m

Thus; the spring constant = 104.82 N/m

b

The angular velocity can be calculated by also using the conservation of energy;

T_1+V_1 = T_3 +V_3  \\ \\ 0+0 = \frac{1}{2}I_o \omega_3^2+\frac{1}{2}k \delta^2 - \frac{mg(a+b)sin \theta }{2} \\ \\ \frac{1}{2} \frac{m(a+b)^2}{3}  \omega_3^2 +  \frac{1}{2} k \delta^2 - \frac{mg(a+b)sin \ \theta }{2} =0

\frac{m(a+b)^2}{3} \omega_3^2  + k(\sqrt{h^2+a^2+2ah sin \theta } - \sqrt{h^2+a^2})^2 - mg(a+b)sin \theta = 0

\frac{1.53(0.6+0.6)^2}{3} \omega_3^2  + 104.82(\sqrt{0.6^2+0.6^2+2(0.6*0.6) sin 32 } - \sqrt{0.6^2+0.6^2})^2 - (1.53*9.81)(0.6+0.2)sin \ 32 = 0

0.7344 \omega_3^2 = 2.128

\omega _3 = \sqrt{\frac{2.128}{0.7344} }

\omega _3 =1.70 \ rad/s

Thus, the angular velocity of the bar when θ = 32° is 1.70 rad/s

7 0
3 years ago
Three charged particles are positioned in the xy plane: a 50-nC charge at y = 6 m on the y axis, a –80-nC charge at x = –4 m on
leva [86]

Answer:48 V

Explanation:

Given

Three charged particle with charge

q_1=50\ nC at y=6\ m

q_2=-80\ nC at x=-4\ m

q_3=70\ nC at y=-6\ m

Electric Potential is given by

V=\frac{kQ}{r}

Distance of q_1 from x=8\ m

d_1=\sqrt{6^2+8^2}

d_1=\sqrt{36+64}

d_1=10\ m

similarly d_2=8-(-4)

d_2=12\ m

d_3=\sqrt{(-6)^2+8^2}

d_3=\sqrt{36+64}

d_3=10\ m

Potential at x=8\ m is

V_{net}=\frac{kq_1}{d_1}+\frac{kq_2}{d_2}+\frac{kq_3}{d_3}

V_{net}=k[\frac{q_1}{d_1}+\frac{q_2}{d_2}+\frac{q_3}{d_3}]

V_{net}=9\times 10^9[\frac{50}{10}-\frac{80}{12}+\frac{70}{10}]\times 10^{-9}

V_{net}=9\times 5.33

V_{net}=47.97\approx 48\ V

5 0
3 years ago
The gravitational field at the Moon in N/kg due to the Earth is approximately (G = 6.67 × 10-11 N m2/kg2, the mass of the Earth
rosijanka [135]

Answer:

F = 2.69 10⁻³ m   [ N]

Explanation:

This exercise asks to calculate the gravitational field of the Earth on the lunar surface, let's use the universal gravitation law

          F = G m M / r²

where m is the mass of the body, M the mass of the Earth and r the distance between the Earth and the Moon

         F = (G M / r²) m

         F = (6.67 10⁻¹¹ 5.98 10²⁴ / (3.85 10⁸)² ) m

         F = 2.69 10⁻³ m   [ N]

This force is directed from the Moon towards the Earth, therefore it reduces the weight of the body

8 0
3 years ago
EXPLAIN how a thermostat uses electric energy, mechanical energy , and thermal energy
notsponge [240]
The appliances with thermostat are designed in such a way that it will provide heat waste energy by converting electrical energy to thermal energy. ... It converts thermal energy into mechanical energy. The nightlight that is used, converts electrical energy to visible light, which is a form of radiant energy.
8 0
2 years ago
A 2kg ball is rolled along the floor for 0.8 m at a constant speed of 6 m/s. What is the work done by gravity?
riadik2000 [5.3K]

=F×s×cosa=2×g×0,8×cos90°= 0

3 0
3 years ago
Read 2 more answers
Other questions:
  • Electrical Safety: What should you do to a hot plate before turning it on? More than one answer may be correct. Check that the l
    6·1 answer
  • SOMEONE HELP  ASAP PLSS
    13·2 answers
  • Does the earths magnetic field change with time?
    13·1 answer
  • On your first trip to Planet X you happen to take along a 180 g mass, a 40-cm-long spring, a meter stick, and a stopwatch. You'r
    8·1 answer
  • The acceleration due to gravity on earth will decrease as which of the following occurs. The mass of the object decreases. The d
    5·1 answer
  • A force is a pull or a push true or false?
    10·1 answer
  • In a Little League baseball game, the 145 g ball reaches the batter with a speed of 15.0 m/s. The batter hits the ball, and it l
    12·1 answer
  • An airplane is flying in a horizontal circle at a speed of 480 km/h (). If its wings are tilted at angle =40° to the horizontal
    6·1 answer
  • A 3.63.kgkg chihuahua charges at a speed of 3.3m/s3.3m/s. What is the magnitude of the average force needed to bring the chihuah
    9·2 answers
  • the volume of a water tank is 5m×4m×2m. If the tank is half filled with water. calculate the pressure exerted at the bottom of t
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!