Answer:
The spring constant = 104.82 N/m
The angular velocity of the bar when θ = 32° is 1.70 rad/s
Explanation:
From the diagram attached below; we use the conservation of energy to determine the spring constant by using to formula:


Also;

Thus;

where;
= deflection in the spring
k = spring constant
b = remaining length in the rod
m = mass of the slender bar
g = acceleration due to gravity


Thus; the spring constant = 104.82 N/m
b
The angular velocity can be calculated by also using the conservation of energy;






Thus, the angular velocity of the bar when θ = 32° is 1.70 rad/s
Answer:48 V
Explanation:
Given
Three charged particle with charge



Electric Potential is given by

Distance of
from 



similarly 




Potential at
is

![V_{net}=k[\frac{q_1}{d_1}+\frac{q_2}{d_2}+\frac{q_3}{d_3}]](https://tex.z-dn.net/?f=V_%7Bnet%7D%3Dk%5B%5Cfrac%7Bq_1%7D%7Bd_1%7D%2B%5Cfrac%7Bq_2%7D%7Bd_2%7D%2B%5Cfrac%7Bq_3%7D%7Bd_3%7D%5D)
![V_{net}=9\times 10^9[\frac{50}{10}-\frac{80}{12}+\frac{70}{10}]\times 10^{-9}](https://tex.z-dn.net/?f=V_%7Bnet%7D%3D9%5Ctimes%2010%5E9%5B%5Cfrac%7B50%7D%7B10%7D-%5Cfrac%7B80%7D%7B12%7D%2B%5Cfrac%7B70%7D%7B10%7D%5D%5Ctimes%2010%5E%7B-9%7D)


Answer:
F = 2.69 10⁻³ m [ N]
Explanation:
This exercise asks to calculate the gravitational field of the Earth on the lunar surface, let's use the universal gravitation law
F = G m M / r²
where m is the mass of the body, M the mass of the Earth and r the distance between the Earth and the Moon
F = (G M / r²) m
F = (6.67 10⁻¹¹ 5.98 10²⁴ / (3.85 10⁸)² ) m
F = 2.69 10⁻³ m [ N]
This force is directed from the Moon towards the Earth, therefore it reduces the weight of the body
The appliances with thermostat are designed in such a way that it will provide heat waste energy by converting electrical energy to thermal energy. ... It converts thermal energy into mechanical energy. The nightlight that is used, converts electrical energy to visible light, which is a form of radiant energy.