Answer:
jumping, pulling a elastic band, bouncing a ball
Explanation:
when you jump, your legs apply a force to the ground, and the ground applies and equal and opposite reaction force that propels you into the air.
When we pull an elastic band, it automatically returns to its original position. The more you pull the more force it generates. This is the same when you pull or compress a spring. The action (applied force) is stored as energy and is released as a reaction with an equal and opposite force
A ball is able to bounce because of the reaction from the ground. If there was no reaction then the ball would not bounce but rather stick to the ground.
Multiple organisms fight for the same recourses
The pulley is really a wheel and axle with a rope or chain attached. A pulley makes work seem easier because it changes the direction of motion to work with gravity. Let's say you have to lift a heavy load, like a bale of hay, up to the second floor of a barn. You could tie a rope to the bale of hay, stand on the second floor, and pull it straight up. Or you could put a pulley at the second floor, stand at the first floor, and lift the bale of hay by pulling straight down. It would be the exact amount of work in either case, but the action of pulling down feels easier because you're working with the force of gravity.
A pulley really saves effort when you have more than one pulley working together. By looping a rope around two, three, or even four pulleys, you can really cut down on the effort needed to lift something. The trade-off? Well, as you increase the number of pulleys, you also increase the distance you have to pull the rope. In other words, if you use two pulleys, it takes half the effort to lift something, but you have to pull the rope twice as far. Three pulleys will result in one-third the effort — but the distance you have to pull the rope is tripled!
Formula from physics to get the answer.
Answer:
579600J
Explanation:
Given parameters:
Height of the building = 828m
Weight of the man = 700N
Unknown:
Work done by the man = ?
Solution:
The work done by the man is the same as the potential energy expended.
Work done:
Work done = Weight x height = 700 x 828
Work done = 579600J