Answer:
-2/5
Step-by-step explanation:
We can find the slope of a line by using
m = (y2-y1)/ (x2-x1)
= (6-4)/(41-46)
= 2/-5
= -2/5
Answer:
x = 5
Step-by-step explanation:
Using Pythagoras' identity in the right triangle.
The square on the hypotenuse is equal to the sum of the squares on the other 2 sides, that is
x² + 12² = 13², so
x² + 144 = 169 ( subtract 144 from both sides )
x² = 25 ( take the square root of both sides )
x =
= 5
Answer: Choice C) Same-side interior angles
------------------------------------------------------------------------------
Angle 4 and angle 6 are on the same side, in this case the right hand side of the transversal line (line t). In addition, they are on the interior of the "train tracks" horizontal lines (line a and line b). Combine this and this is why the two angles are same-side interior angles
Side note: if line a is parallel to line b, then angle 4 and angle 6 add to 180 degrees. At this point, they are considered supplementary.
The picture is not clear. let me assume
y = (x^4)ln(x^3)
product rule :
d f(x)g(x) = f(x) dg(x) + g(x) df(x)
dy/dx = (x^4)d[ln(x^3)/dx] + d[(x^4)/dx] ln(x^3)
= (x^4)d[ln(x^3)/dx] + 4(x^3) ln(x^3)
look at d[ln(x^3)/dx]
d[ln(x^3)/dx]
= d[ln(x^3)/dx][d(x^3)/d(x^3)]
= d[ln(x^3)/d(x^3)][d(x^3)/dx]
= [1/(x^3)][3x^2] = 3/x
... chain rule (in detail)
end up with
dy/dx = (x^4)[3/x] + 4(x^3) ln(x^3)
= x^3[3 + 4ln(x^3)]