Answer:
The magnitude of the centripetal acceleration increases by 16 times when the linear speed increases by 4 times.
Explanation:
The initial centripetal acceleration, a of the race-car around the circular track of radius , R with a linear speed v is a = v²/R.
When the linear speed of the race-car increases to v' = 4v, the centripetal acceleration a' becomes a' = v'²/R = (4v)²/R = 16v²/R.
So the centripetal acceleration, a' = 16v²/R.
To know how much the magnitude of the car's centripetal acceleration changes, we take the ratio a'/a = 16v²/R ÷ v²/R = 16
a'/a = 16
a' = 16a.
So the magnitude of the centripetal acceleration increases by 16 times when the linear speed increases by 4 times.
The law of conservation of momentum<span> states that for two objects colliding in an isolated system, the total </span>momentum<span> before and after the collision is equal. Momentum should be conserved. Hope this answers the question. Have a nice day.</span>
Answer:
the answer is B
Explanation:
wave x has the highest hertz making it the answer
According to this equation
F = G × m₁*m₂ ÷ r²
other than the mass, the distance also affects the gravitational force between two objects (same mass or not).
Therefore the correct answer is B. The distance between the objects
Future note* use formulas to help you figure these sort of questions out. (if they have a formula to begin with).
Answer:
60 m
Explanation:
After 3 seconds of travel at 20 m/s, the projectile is 3·20 = 60 meters horizontally from the cannon.
__
The vertical height after 3 seconds is 0.9 m, so the straight-line distance from cannon to target is √(60^2 +0.9^2) ≈ 60.007 meters.