Answer:
18.0 g of mercury (11) oxide decomposes to produce 9.0 grams of mercury
Explanation:
Mercury oxide has molar mass of 216.6 g/ mol. It gas a molecular formula of HgO.
The decomposition of mercury oxide is given by the chemical equation below:
2HgO ----> 2Hg + O₂
2 moles of HgO decomposes to produce 1 mole of Hg
2 moles of HgO has a mass of 433.2 g
433.2 g of HgO produces 216.6 g of Hg
18.0 of HgO will produce 18 × 216.6/433.2 g of Hg = 9.0 g of Hg
Therefore, 18.0 g of mercury (11) oxide decomposes to produce 9.0 grams of mercury
Transferring or sharing electrons between atoms forms a covalent bond.<span> Covalent
bonding is when atoms share electrons. It is a chemical bond that involves the
sharing of electron pairs. These pairs are called bonding pairs. Examples of
compounds that has covalent bonds are CO2, organic compounds, lipids and
proteins.</span>
Answer:
- What distinguish a solution in general from an aqueous solution is the solvent. A solution in general may contain any solvent, which may be solid, liquid or gas, while an aqueous solution is formed with water as solvent.
Explanation:
A solution in general is a homogeneous mixture in which a substance, named solute, is dissolved, in other substance, name solvent.
Solutions may be in solid, liquid or gas state. There are many kind of solvents. Usually, in a lab you work with liquid solutions. Some liquid solvents are: ethanol, glycerin, hexane, benzene, and water, among many others.
Aqueous solution is a solution where the solvent is water. Of course, the solute may be any one: NaCl, sugar, ethanol, an acid, a base, a salt.
What distinguish a solution in general and an aqueous solution is the solvent.
Answer:
n = 12.18 moles
Explanation:
Given that,
The volume of a canister, V = 1 L
The temperature of the canister, T = 100 K
Pressure, P = 100 atm
We need to find the number of moles of gas. Let there are n number of moles. We know that,
PV = nRT
Where
R is gas constant, R = 0.0821 L*atm/mol*K

Hence, there are 12.18 moles of gas.