Answer:
The amount of drug left in his body at 7:00 pm is 315.7 mg.
Explanation:
First, we need to find the amount of drug in the body at 90 min by using the exponential decay equation:

Where:
λ: is the decay constant = 
: is the half-life of the drug = 3.5 h
N(t): is the quantity of the drug at time t
N₀: is the initial quantity
After 90 min and before he takes the other 200 mg pill, we have:

Now, at 7:00 pm we have:

Therefore, the amount of drug left in his body at 7:00 pm is 315.7 mg (from an initial amount of 400 mg).
I hope it helps you!
See the sketch attached.
<h3>Explanation</h3>
The Lewis structure of a molecule describes
- the number of bonds it has,
- the source of electrons in each bond, and
- the position of any lone pairs of electrons.
Atoms are most stable when they have eight or no electrons in their valence shell (or two, in case of hydrogen.)
- Each oxygen atom contains six valence electrons. It demands <em>two</em> extra electrons to be chemically stable.
- Each sulfur atom contains six valence electrons. It demands <em>two </em> extra electrons to be chemically stable.
- Each hydrogen atom demands <em>one</em> extra electron to be stable.
H₂O contains two hydrogen atoms and one oxygen atom. It would take an extra 2 + 2 × 1 = 4 electrons for all its three atoms are stable. Atoms in an H₂O would achieve that need by sharing electrons. It would form a total of 4 / 2 = 2 O-H bonds.
Each O-H bond contains one electron from oxygen and one from hydrogen. Hydrogen has no electron left. Oxygen has six electrons. Two of them have went to the two O-H bonds. The remaining four become 4 / 2 = 2 lone pairs. The lone pairs repel the O-H bonds. By convention, they are placed on top of the two H atoms.
Similarly, atoms in a SO₂ molecule demands an extra 2 × 2 + 2 = 6 electrons for its three atoms to become chemically stable. It would form 6 / 2 = 3 chemical bonds. Loops are unlikely in molecules without carbon. As a result, one of the two O atoms would form two bonds with the S atom while the other form only one.
Atoms are unstable with an odd number of valence electrons. The S atom in SO₂ would have become unstable if it contribute one electron to each of the three bond. It would end up with 3 × 2 + 3 = 9 valence electrons. One possible solution is that it contributes two electrons in one particular bond. One of the three bonds would be a coordinate covalent bond, with both electrons in that bond from the S atom. In some textbooks this type of bonds are also known as dative bonds.
Dots and crosses denotes the origin of electrons in a bond. Use the same symbol for electrons from the same atom. Electrons from the oxygen atoms O are shown in blue in the sketch. They don't have to be colored.
Answer:
Very toxic materials are substances that may cause significant harm or even death to an individual if even very small amounts enter the body.There are a number of very toxic materials that may be used in workplaces. Some examples include carbon monoxide, hydrogen sulfide, chlorine and sodium cyanide
Explanation:
here are generally four types of toxic entities; chemical, biological, physical and radiation: Chemical toxicants include inorganic substances such as, lead, mercury, hydrofluoric acid, and chlorine gas, and organic compounds such as methyl alcohol, most medications, and toxins.