Answer:
0.271 M NO₃⁻
Explanation:
To find the molarity of the nitrate ion (NO₃⁻), you need to (1) convert grams to moles (via molar mass), then (2) convert moles Al(NO₃)₃ to moles NO₃⁻, then (3) convert mL to L, and then (4) calculate the molarity. When (Al(NO₃)₃) dissolves in water, it dissociates into 3 nitrate ions. The final answer should have 3 sig figs.
(Steps 1 + 2)
Molar Mass (Al(NO₃)₃): 26.982 g/mol + 3(14.007 g/mol) + 9(15.998 g/mol)
Molar Mass (Al(NO₃)₃): 212.985 g/mol
1 Al(NO₃)₃ = 1 Al³⁺ and 3 NO₃⁻
6.25 g Al(NO₃)₃ 1 mole 3 moles NO₃⁻
------------------------- x ----------------- x ----------------------- = 0.0880 moles NO₃⁻
212.985 g 1 mole Al(NO₃)₃
(Steps 3 + 4)
325.0 mL / 1,000 = 0.3250 L
Molarity = moles / volume
Molarity = 0.0880 moles / 0.3250 L
Molarity = 0.271 M
Answer:
<h2>18 kg.m/s</h2>
Explanation:
The momentum of an object can be found by using the formula
momentum = mass × velocity
From the question we have
momentum = 2 × 9
We have the final answer as
<h3>18 kg.m/s</h3>
Hope this helps you
Explanation:
Since, it is given that carbon dioxide is completely removed by absorption with NaOH. And, pressure inside the container is 0.250 atm.
For Kr = 0.250 atm and pressure
will be calculated as follows.
= (0.708 - 0.250) atm
= 0.458 atm
Now, we will calculate the mole fraction as follows.

= 0.646
Kr = 
= 0.353
Now, we will convert into gram fraction as follows.

= 28.424
Kr = 
= 29.57
Therefore, total mass is calculated as follows.
Total mass = (28.424 + 29.57)
= 57.994
Hence, the percentage of
and Kr are calculated as follows.

= 49%
Kr = 
= 51%
Hence, amount of
and Kr present i mixture is as follows.
in mixture = 
= 17.15 g
Kr = 
= 17.85 g
Thus, we can conclude that 17.15 g of
is originally present and 17.85 g of Kr is recovered.
Answer:
Eurkaryote... sorry if i wrong
Explanation: