The volume of CO2 at STP =124.298 L
<h3>Further explanation</h3>
Given
Reaction
4 KMnO4, +4 C3H5(OH)5, -7K2CO3, + 7 Mn2O3, +5 CO2, + 16 H2O
701,52 g of KMnO4
Required
volume of CO2 at STP
Solution
mol KMnO4 (MW=158,034 g/mol) :
mol = mass : MW
mol = 701.52 : 158.034
mol = 4.439
mol CO2 from equation : 5/4 x mol KMnO4 = 5/4 x 4.439 = 5.549
At STP 1 mol = 22.4 L, so for 5.549 moles :
=5.549 x 22.4
=124.298 L
Answer:
e) pH is independent of concentration.
Explanation:
a) It is a mixture of a weak acid and its conjugate base. <em>TRUE. </em>A buffer is defined as a mixture of a weak acid and its conjugate base or a weak base and its conjugate acid.
b) Resists pH changes because it reacts with added acid or base. <em>TRUE. </em>Thermodynamically, the reaction of added acid or base is faster with the buffer mixture than with H⁺ or OH⁻ ions of the solutions.
c) The maximum buffer capacity is at pH = pKa. <em>TRUE. </em>The buffer capacity is pka±1. For this, buffer capacity is maximum in pka.
d) pH is dependent on the solution ionic strength and temperature. <em>TRUE.</em> Ionic strength and temperature are factors that influence concentrations of ions in solutions as the H⁺ ion that is the responsible
e) pH is independent of concentration. <em>FALSE. </em>pH in a buffer depends completely of concentrations of the acid and its conjugate base or vice versa.
I hope it helps!
Answer:
To calculate the theoretical yield, determine the number of moles of each reactant, in this case the sole reactant ethanol. Convert the 100 g to moles; the molecular weight of ethanol is 46 g/mole, therefore: Since there is only one reactant, it is also the limiting reagent.
Explanation:
IM SORRY I AM BUSY TO BUT PLEESE ALL I GOT RIGHT NOW
MAKE ME BRANLIEST
The answer is cell wall...i found it here: https://www.quia.com/jg/1351880list.html