A patient who is prescribed a dose inhaler will find that it must be filled with a) medicine in powder form only. Works with lower (not upper) respiratory diseases only. Full of medicine used to give a fixed amount of medicine per oral inhalation. d) Medication in the form of a spray only.
B
Please help
Sorry I need 20 characters to submit this Answer that’s why I’m adding more words
%yield = 88.5%
<h3>Further explanation</h3>
Given
Reaction
Cu(s) + 2 AgNO₃(aq) → Cu(NO₃)₂(aq) + 2Ag(s)
Required
The percent yield
Solution
mol AgNO₃(MW=169,87 g/mol) :
= mass : MW
= 127 : 169.87
= 0.748
mol Ag from equation :
= 2/2 x mol AgNO₃
= 2/2 x 0.748
= 0.748
Mass Ag (theoretical) :
= mol x Ar Ag
= 0.748 x 108
= 80.784
% yield = (actual/theoretical) x 100%
%yield = 71.5/80.784 x 100%
<em>%yield = 88.5%</em>
HF and NaF - If the right concentrations of aqueous solutions are present, they can produce a buffer solution.
<h3>What are buffer solutions and how do they differ?</h3>
- The two main categories of buffers are acidic buffer solutions and alkaline buffer solutions.
- Acidic buffers are solutions that contain a weak acid and one of its salts and have a pH below 7.
- For instance, a buffer solution with a pH of roughly 4.75 is made of acetic acid and sodium acetate.
<h3>Describe buffer solution via an example.</h3>
- When a weak acid or a weak base is applied in modest amounts, buffer solutions withstand the pH shift.
- A buffer made of a weak acid and its salt is an example.
- It is a solution of acetic acid and sodium acetate CH3COOH + CH3COONa.
learn more about buffer solutions here
<u>brainly.com/question/8676275</u>
#SPJ4