Below are the choices that can be found elsewhere:
A. (4.9 × 10-14 newtons) · tan(30°)
<span>B. (4.9 × 10-14 newtons) · sin(30°) </span>
<span>C. (4.9 × 10-14 newtons) · cos(30°) </span>
<span>D. (4.9 × 10-14 newtons) · arctan(30°) </span>
<span>E. (4.9 × 10-14 newtons) · arccos(30°)
</span>
<span>Force is proportional to the angle made by the velocity with respect to the magnetic field. It is maximum when velocity is perpendicular to the magnetic field and minimum when the velocity is parallel to the magnetic field. It is proportional to sin of the angle. In this problem it will be proportional to sin(30)</span>
The correct answer is
Air resistance
In fact, when a ball is in free fall, there are two forces acting on it:
- its weight (force of gravity), acting downward
- the air resistance, acting upward
The effect of the weight is to accelerate the ball, because its direction is the same as the direction of motion of the ball, while the effect of the air resistance is to slow down the ball, because its direction is opposite to that of the motion.
Answer:
Magnitude and direction.
Explanation:
Velocity can be defined as the rate of change in displacement (distance) with time. Velocity is a vector quantity and as such it has both magnitude and direction.
Mathematically, velocity is given by the equation;

Gravity is considered to be a universal force of attraction which acts between all objects that has both mass, energy and occupy space. Therefore, it acts in such a way as to bring objects together.
Additionally, the gravity of earth makes it possible for all physical objects to possess weight.
Hence, in free fall, the magnitude and direction of velocity of the object changes.
Answer:
6.67×10¯⁹ A
Explanation:
From the question given above, the following data were obtained:
Quantity of electricity (Q) = 2 μC
Time (t) = 5 mins
Current (I) =?
Next, we shall convert 2 μC to C. This can be obtained as follow:
1 μC = 1×10¯⁶ C
Therefore,
2 μC = 2 μC × 1×10¯⁶ C / 1 μC
2 μC = 2×10¯⁶ C
Next, we shall convert 5 mins to seconds. This can be obtained as follow:
1 min = 60 secs
Therefore,
5 min = 5 min × 60 sec / 1 min
5 mins = 300 s
Finally, we shall determine the current in the circuit. This can be obtained as follow:
Quantity of electricity (Q) = 2×10¯⁶ C
Time (t) = 300 s
Current (I) =?
Q = It
2×10¯⁶ = I × 300
Divide both side by 300
I = 2×10¯⁶ / 300
I = 6.67×10¯⁹ A
Thus, the current in the circuit is 6.67×10¯⁹ A
Answer:
Oppositely charged particles attract each other, while like particles repel one another. Electrons are kept in the orbit around the nucleus by the electromagnetic force, because the nucleus in the center of the atom is positively charged and attracts the negatively charged electrons.
Explanation: