Answer:
Since many viruses can infect a large number of different cell types, ... An example is potato yellow dwarf virus, which can grow in leafhoppers
Answer:
The amount invested as certificates of deposit is $ 35,000 and The amount invested as bonds is $ 41,000
Step-by-step explanation:
Given as :
The total amount to be invested as bonds and certificates of deposit (CD) = $76,000
Let the amount invested as bonds = $ x + $6000
And The amount invested as CD = $ x
Now, According to question
The amount invested as CD + The amount invested as bonds = $ x + $ x + $6000
Or, $ x + $ x + $6000 = $76,000
Or, $ 2x = $76,000 - $6000
So, $ 2x = $70,000
∴ x =
= $ 35,000
And $ x + $6000 = $ 35,000 + $6000 = $ 41,000
Hence The amount invested as certificates of deposit is $ 35,000 and The amount invested as bonds is $ 41,000 Answer
Part A: To find the lengths of sides 1, 2, and 3, we need to add them together. We can do this by combining like terms (terms that have the same variables, or no variables).
(3y² + 2y − 6) + (3y − 7 + 4y²) + (−8 + 5y² + 4y)
We can now group them.
(3y² + 4y² + 5y²) + (2y + 3y + 4y) + (-6 - 7 - 8)
Now we simplify
12y² + 9y - 21
Part B: To find the length of the 4th side, we need to subtract the combined length of the 3 sides we know from the total length (perimeter).
(4y³ + 18y² + 16y − 26) - (12y² + 9y - 21)
Simplify, subtract like terms.
4y³ + (18y² - 12y²) + (16y - 9y) + (-26 + 21)
4y³ + 6y² + 7y - 5 is the length of the 4th side.
Part C (sorry for the bad explanation): A set of numbers is closed, or has closure, under a given operation if the result of the operation on any two numbers in the set is also in the set.
For example, the set of real numbers is closed under addition, because adding any two real numbers results in another real number. Likewise, the real numbers are closed under subtraction, multiplication and division (by a nonzero real number), because performing these operations on two real numbers always yields another real number.
<em>Polynomials are closed under the same operations as integers. </em>