1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
const2013 [10]
3 years ago
14

The electric force between electric charges is much larger than the gravitational force between the charges. Why, then, is the g

ravitational force between Earth and the Moon much larger than the electric force between Earth and the Moon?
Physics
1 answer:
Mamont248 [21]3 years ago
5 0

Answer:

Explanation:

The electric force between charges is much larger than the gravitational force but Gravitational force between earth and moon is dominant over Electric force because earth and moon are the electrically neutral body.

Electrically neutral bodies are those bodies that contain equal no of electron and proton in the body.

An example of electrically neutral bodies is a neutron.    

You might be interested in
The cheetah is considered the fastest running animal in the world. Cheetahs can accelerate to a speed of 21.7 m/s in 2.50 s and
viktelen [127]

Answer:

1) 64.2 mi/h

2) 3.31 seconds

3) 47.5 m

4) 5.26 seconds

Explanation:

t = Time taken = 2.5 s

u = Initial velocity = 0 m/s

v = Final velocity = 21.7 m/s

s = Displacement

a = Acceleration

1) Top speed = 28.7 m/s

1 mile = 1609.344 m

1\ m=\frac{1}{1609.344}\ miles

1 hour = 60×60 seconds

1\ s=\frac{1}{3600}\ hours

28.7\ m/s=\frac{\frac{28.7}{1609.344}}{\frac{1}{3600}}=64.2\ mi/h

Top speed of the cheetah is 64.2 mi/h

Equation of motion

v=u+at\\\Rightarrow a=\frac{v-u}{t}\\\Rightarrow t=\frac{21.7-0}{2.5}\\\Rightarrow a=8.68\ m/s^2

Acceleration of the cheetah is 8.68 m/s²

2)

v=u+at\\\Rightarrow t=\frac{v-u}{a}\\\Rightarrow t=\frac{28.7-0}{8.68}\\\Rightarrow t=3.31\ s

It takes a cheetah 3.31 seconds to reach its top speed.

3)

v^2-u^2=2as\\\Rightarrow s=\frac{v^2-u^2}{2a}\\\Rightarrow s=\frac{28.7^2-0^2}{2\times 8.68}\\\Rightarrow s=47.5\ m

It travels 47.5 m in that time

4) When s = 120 m

s=ut+\frac{1}{2}at^2\\\Rightarrow 120=0\times t+\frac{1}{2}\times 8.68\times t^2\\\Rightarrow t=\sqrt{\frac{120\times 2}{8.68}}\\\Rightarrow t=5.26\ s

The time it takes the cheetah to reach a rabbit is 120 m is 5.26 seconds

8 0
3 years ago
1. As a person stands on earth they put a force on the ground and the ground puts a force on them.
Scorpion4ik [409]

Answer:

mb

Explanation:

m b

8 0
2 years ago
A delivery truck leaves a warehouse and travels 2.60 km north. The truck makes a left turn and travels 1.25 km west before makin
yulyashka [42]

Answer:

4.19 km and 107.35 degrees north of east

Explanation:

So in the end, the truck is (2.6 + 1.4 = 4km) north and 1.25 km west from the warehouse. We can use the Pythagorean formula to calculate the magnitude and direction α of the truck displacement from the warehouse:

s = \sqrt{s_n^2 + s_w^2} = \sqrt{4^2 + 1.25^2} = \sqrt{16 + 1.5625} = \sqrt{17.5625} = 4.19 km

tan\alpha = \frac{s_n}{s_w} = \frac{4}{1.25} = 3.2

\alpha = tan^{-1}3.2 = 1.27 rad \approx 72.65 degrees north or west or (180 - 72.65) = 107.35 degrees north of east

3 0
3 years ago
A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a un
Kamila [148]

Answer:

<em>a) 6738.27 J</em>

<em>b) 61.908 J</em>

<em>c)  </em>\frac{4492.18}{v_{car} ^{2} }

<em></em>

Explanation:

The complete question is

A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a uniform solid cylinder rotating around its axis, with moment of inertia I = 1/2 mr2.

Part (a) If such a flywheel of radius r1 = 1.1 m and mass m1 = 11 kg can spin at a maximum speed of v = 35 m/s at its rim, calculate the maximum amount of energy, in joules, that this flywheel can store?

Part (b) Consider a scenario in which the flywheel described in part (a) (r1 = 1.1 m, mass m1 = 11 kg, v = 35 m/s at the rim) is spinning freely at its maximum speed, when a second flywheel of radius r2 = 2.8 m and mass m2 = 16 kg is coaxially dropped from rest onto it and sticks to it, so that they then rotate together as a single body. Calculate the energy, in joules, that is now stored in the wheel?

Part (c) Return now to the flywheel of part (a), with mass m1, radius r1, and speed v at its rim. Imagine the flywheel delivers one third of its stored kinetic energy to car, initially at rest, leaving it with a speed vcar. Enter an expression for the mass of the car, in terms of the quantities defined here.

moment of inertia is given as

I = \frac{1}{2}mr^{2}

where m is the mass of the flywheel,

and r is the radius of the flywheel

for the flywheel with radius 1.1 m

and mass 11 kg

moment of inertia will be

I =  \frac{1}{2}*11*1.1^{2} = 6.655 kg-m^2

The maximum speed of the flywheel = 35 m/s

we know that v = ωr

where v is the linear speed = 35 m/s

ω = angular speed

r = radius

therefore,

ω = v/r = 35/1.1 = 31.82 rad/s

maximum rotational energy of the flywheel will be

E = Iw^{2} = 6.655 x 31.82^{2} = <em>6738.27 J</em>

<em></em>

b) second flywheel  has

radius = 2.8 m

mass = 16 kg

moment of inertia is

I = \frac{1}{2}mr^{2} =  \frac{1}{2}*16*2.8^{2} = 62.72 kg-m^2

According to conservation of angular momentum, the total initial angular momentum of the first flywheel, must be equal to the total final angular momentum of the combination two flywheels

for the first flywheel, rotational momentum = Iw = 6.655 x 31.82 = 211.76 kg-m^2-rad/s

for their combination, the rotational momentum is

(I_{1} +I_{2} )w

where the subscripts 1 and 2 indicates the values first and second  flywheels

(I_{1} +I_{2} )w = (6.655 + 62.72)ω

where ω here is their final angular momentum together

==> 69.375ω

Equating the two rotational momenta, we have

211.76 = 69.375ω

ω = 211.76/69.375 = 3.05 rad/s

Therefore, the energy stored in the first flywheel in this situation is

E = Iw^{2} = 6.655 x 3.05^{2} = <em>61.908 J</em>

<em></em>

<em></em>

c) one third of the initial energy of the flywheel is

6738.27/3 = 2246.09 J

For the car, the kinetic energy = \frac{1}{2}mv_{car} ^{2}

where m is the mass of the car

v_{car} is the velocity of the car

Equating the energy

2246.09 =  \frac{1}{2}mv_{car} ^{2}

making m the subject of the formula

mass of the car m = \frac{4492.18}{v_{car} ^{2} }

3 0
3 years ago
A geosynchronous Earth satellite is one that has an orbital period of precisely 1 day. Such orbits are useful for communication
koban [17]

Answer:

r = 4.24x10⁴ km.  

     

Explanation:

To find the radius of such an orbit we need to use Kepler's third law:

\frac{T_{1}^{2}}{T_{2}^{2}} = \frac{r_{1}^{3}}{r_{2}^{3}}

<em>where T₁: is the orbital period of the geosynchronous Earth satellite = 1 d, T₂: is the orbital period of the moon = 0.07481 y, r₁: is the radius of such an orbit and r₂: is the orbital radius of the moon = 3.84x10⁵ km.                           </em>                              

From equation (1), r₁ is:

r_{1} = r_{2} \sqrt[3] {(\frac{T_{1}}{T_{2}})^{2}}                            

r_{1} = 3.84\cdot 10^{5} km \sqrt[3] {(\frac{1 d}{0.07481 y \cdot \frac{365 d}{1 y}})^{2}}      

r_{1} = 4.24 \cdot 10^{4} km      

Therefore, the radius of such an orbit is 4.24x10⁴ km.

I hope it helps you!

3 0
3 years ago
Other questions:
  • A current in a secondary coil is induced only if:
    14·1 answer
  • Whats the temperature -15°F in degrees Celsius?
    5·2 answers
  • A ball is dropped off the side of a bridge after falling 1.55 s, what is its velocity.
    12·1 answer
  • the coefficient of static friction between a 40 kg picnic table and the ground below is .43. what is the greatest horizontal for
    14·2 answers
  • A new planet is discovered in an approximately circular orbit beyond Pluto. It moves at a rate of approximately 1° per year. It'
    6·1 answer
  • What is the velocity of a wave that has a frequency of 200 Hz and a<br> wavelength of 0.5m?
    15·1 answer
  • Which clock do scientists use to measure time why​
    14·2 answers
  • A wave oscillates 5.0 times a second and has a speed of 8.0 m/s .What is the frequency of this wave?
    9·1 answer
  • What is the kinetic energy of a jogger with a mass of 70.8 kg traveling at a speed of 2.4 m/s?
    11·1 answer
  • fins the powee of a convex lens which forms a real and inverted image of magnification -1 of an object placed at a distance from
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!