When light moves from a medium with higher refractive index to a medium with lower refractive index, the critical angle is the angle above which there is no refracted light, and all the light is reflected. The value of this angle is given by
![\theta_c = \arcsin ( \frac{n_2}{n_1} )](https://tex.z-dn.net/?f=%5Ctheta_c%20%3D%20%5Carcsin%20%28%20%5Cfrac%7Bn_2%7D%7Bn_1%7D%20%29)
where n2 and n1 are the refractive indices of the second and first medium, respectively.
In the first part of the problem, light moves from glass to air (
![n_a=1.00](https://tex.z-dn.net/?f=n_a%3D1.00%20)
) and the critical angle is
![\theta_c = 30.8^{\circ}](https://tex.z-dn.net/?f=%5Ctheta_c%20%3D%2030.8%5E%7B%5Ccirc%7D)
. This means that we can find the refractive index of glass by re-arranging the previous formula:
![n_g=n_1 = \frac{n_2}{\sin \theta_c}= \frac{1.00}{\sin 30.8^{\circ}}=1.95](https://tex.z-dn.net/?f=n_g%3Dn_1%20%3D%20%20%5Cfrac%7Bn_2%7D%7B%5Csin%20%5Ctheta_c%7D%3D%20%5Cfrac%7B1.00%7D%7B%5Csin%2030.8%5E%7B%5Ccirc%7D%7D%3D1.95%20%20)
Now the glass is put into water, whose refractive index is
![n_w = 1.33](https://tex.z-dn.net/?f=n_w%20%3D%201.33)
. If light moves from glass to water, the new critical angle will be
Answer:
La única manera en que nuestro astronauta sería capaz de empujar la nave espacial en el espacio sin alejarse sería usar algo llamado "unidad de propulsión de astronauta". Supongamos que el astronauta está usando un SPK soviético, el sistema de cohetes mochila más poderoso jamás utilizado en el espacio.
Explanation:
Newton's first law of motion states that an object that is resting (not moving) will stay motionless unless an external force acts on it and an object in motion will stay in motion unless an outside force acts on it. This law is known as newton's law of inertia.
Answer:
The least amount of time in which the fisherman can raise the fish to the dock without losing it is t= 2 seconds.
Explanation:
m= 5 kg
h= 2m
Fmax= 54 N
g= 9.8 m/s²
W= m * g
W= 49 N
F= Fmax - W
F= 5 N
F=m*a
a= F/m
a= 1 m/s²
h= a * t²/2
t= √(2*h/a)
t= 2 seconds