Along the flow direction, the boundary layer's thickness varies. For ReT values between 260 and 780, the boundary layer thickness—defined as the depth at which the normalized concentration has a value of 1/e—ranges between 800 and 250 m.
<h3>What is the Boundary layer?</h3>
- A boundary layer is the thin layer of fluid that forms immediately around a bounded surface in physics and fluid mechanics as a result of the fluid flowing along the surface.
- A no-slip boundary condition is created as a result of the fluid and wall interaction (zero velocity at the wall).
- After that, the flow velocity above the surface steadily rises until it reaches the bulk flow velocity again.
- The term "velocity boundary layer" refers to the thin layer of fluid whose velocity has not yet recovered to that of the main flow.
<h3>What purpose does a boundary layer serve?</h3>
- Because it is on the fluid's boundary, engineers refer to this layer as the boundary layer.
- Many aerodynamics issues, such as wing stall, skin friction drag on an object, and the heat transfer that takes place in high-speed flight, depend heavily on the specifics of the flow within the boundary layer.
Learn more about Boundary layer here:
brainly.com/question/12974964
#SPJ4
Answer:
98%
Explanation:
Given parameters
Mass of motor = 10kg
Height = 2m
Time = 2s
Power input = 100w
Unknown
Efficiency = ?
Solution
Efficiency is the percentage of the power output to the power input.
Power is the rate at which work is done.
Power output = mass x g x height / time
g is the acceleration due to gravity
Power output = 10x 2 x 9.8 / 2 = 98W
Efficiency = power output/ power input x 100
Efficiency = 98/100 x 100 = 98%
Answer:
The coefficient of kinetic friction between the puck and the ice is 0.11
Explanation:
Given;
initial speed, u = 9.3 m/s
sliding distance, S = 42 m
From equation of motion we determine the acceleration;
v² = u² + 2as
0 = (9.3)² + (2x42)a
- 84a = 86.49
a = -86.49/84
|a| = 1.0296
= ma
where;
Fk is the frictional force
μk is the coefficient of kinetic friction
N is the normal reaction = mg
μkmg = ma
μkg = a
μk = a/g
where;
g is the gravitational constant = 9.8 m/s²
μk = a/g
μk = 1.0296/9.8
μk = 0.11
Therefore, the coefficient of kinetic friction between the puck and the ice is 0.11
It takes significantly stronger magnetic and electric field strengths to move a beam of alpha particles compared with the beam of electrons(betaparticles) because the charge of an alpha particle is twice stronger than a beta particle. Therefore, more energy is needed to move the alpha particle.
The answer is either C or D.