Answer:
6.14 s
Explanation:
The time the rocket takes to reach the top is only determined from its vertical motion.
The initial vertical velocity of the rocket is:

where
u = 100 m/s is the initial speed
is the angle of launch
Now we can apply the suvat equation for an object in free-fall:

where
is the vertical velocity at time t
is the acceleration of gravity
The rocket reaches the top when

So by substituting into the equation, we find the time t at which this happens:

You didn't attach the figure. Your text is incomplete. And you never got around to asking a question. Other than that, we're on it.
To explain, I will use the equations for kinetic and potential energy:

<h3>Potential energy </h3>
Potential energy is the potential an object has to move due to gravity. An object can only have potential energy if 1) <u>gravity is present</u> and 2) <u>it is above the ground at height h</u>. If gravity = 0 or height = 0, there is no potential energy. Example:
An object of 5 kg is sitting on a table 5 meters above the ground on earth (g = 9.8 m/s^2). What is the object's gravitational potential energy? <u>(answer: 5*5*9.8 = 245 J</u>)
(gravitational potential energy is potential energy)
<h3>Kinetic energy</h3>
Kinetic energy is the energy of an object has while in motion. An object can only have kinetic energy if the object has a non-zero velocity (it is moving and not stationary). An example:
An object of 5 kg is moving at 5 m/s. What is the object's kinetic energy? (<u>answer: 5*5 = 25 J</u>)
<h3>Kinetic and Potential Energy</h3>
Sometimes, an object can have both kinetic and potential energy. If an object is moving (kinetic energy) and is above the ground (potential), it will have both. To find the total (mechanical) energy, you can add the kinetic and potential energies together. An example:
An object of 5 kg is moving on a 5 meter table at 10 m/s. What is the objects mechanical (total) energy? (<u>answer: KE = .5(5)(10^2) = 250 J; PE = (5)(9.8)(5) = 245 J; total: 245 + 250 = 495 J</u>)
Divide distance by the time it takes to travel that distance
the formula for time is divide distance/speed
<h3><u>Answer;</u></h3>
B. constant acceleration.
<h3><u>Explanation</u>;</h3>
- Free fall is the type of motion of a body or an object when only gravity is acting on it.
- <em><u>All objects undergo free fall on the earth surface at the same rate irrespective of their mass. This is because the gravitational field on the surface of the earth 9.8 N/kg, causes and acceleration equivalent to 9.8 m/s/s of any object in free fall motion.</u></em>
- Therefore,<u> the acceleration of any freely falling object near the surface of the earth is 9.8 m/s².</u>