In case of an object sitting at rest on another base, there are two equal and opposite forces – Normal force and the gravity.
Answer: Option A
<u>Explanation:
</u>
When an object is placed at rest position on another object, there is a force exerted by the surfaces of the two contact objects. This force is denoted as Normal Force.
When an object such as a box is placed on a shelf, its surface exerts a contact force on the base of the shelf- The Normal force directed upward. Meanwhile, the gravity stays at its action and tries to pull the box towards itself.
Both of these forces however are equal and opposite and therefore, there is zero net force on the box. That's why it remains at rest, holding on Newton's third law.
In order to decrease the friction on the slide,
we could try some of these:
-- Install a drippy pipe across the top that keeps continuously
dripping olive oil on the top end of the slide. The oil oozes
down the slide and keeps the whole slide greased.
-- Hire a man to spread a coat of butter on the whole slide,
every 30 minutes.
-- Spray the whole slide with soapy sudsy water, every 30 minutes.
-- Drill a million holes in the slide,and pump high-pressure air
through the holes. Make the slide like an air hockey table.
-- Keep the slide very cold, and keep spraying it with a fine mist
of water. The water freezes, and a thin coating of ice stays on
the slide.
-- Ask a local auto mechanic to please, every time he changes
the oil in somebody's car, to keep all the old oil, and once a week
to bring his old oil to the park, to spread on the slide. If it keeps
the inside of a hot car engine slippery, it should do a great job
keeping a simple park slide slippery.
-- Keep a thousand pairs of teflon pants near the bottom of the ladder
at the beginning of the slide. Anybody who wants to slide faster can
borrow a set of teflon pants, put them on before he uses the slide, and
return them when he's ready to go home from the park.
I’m pretty sure the answer is C. Any change of state or movement requires energy
Each energy sublevel corresponds to an orbital of a different shape.
Explanation:
Two sublevels of the same principal energy level differs from each other if the sublevels corrresponds to an orbital of a different shape.
- The principal quantum number of an atom represents the main energy level in which the orbital is located or the distance of an orbital from the nucleus. It takes values of n = 1,2,3,4 et.c
- The secondary quantum number gives the shape of the orbitals in subshells accommodating electrons.
- The number of possible shapes is limited by the principal quantum numbers.
Take for example, Carbon:
1s² 2s² 2p²
The second energy level is 2 but with two different sublevels of s and p. They have different shapes. S is spherical and P is dumb-bell shaped .
Learn more:
Quantum number brainly.com/question/9288609
#learnwithBrainly