6 is the answer I remember the answer from when I took this and it was easy
b is the answer there you go if you need the answer
Answer:
If a Gaussian surface is completely inside an electrostatic conductor, the electric field must always be zero at all points on that surface.
Explanation:
Option A is incorrect because, given this case, it is easier to calculate the field.
Option B is incorrect because, in a situation where the surface is placed inside a uniform field, option B is violated
Option C is also incorrect because it is possible to be a field from outside charges, but there will be an absence of net flux through the surface from these.
Hence, option D is the correct answer. "If a Gaussian surface is completely inside an electrostatic conductor, the electric field must always be zero at all points on that surface."
Answer:
The possible thickness of the soap bubble = 
Explanation:
<u>Given:</u>
- Refractive index of the soap bubble,

- Wavelength of the light taken,

Let the thickness of the soap bubble be
.
It is given that the soap bubble appears very bright, it means, there is a constructive interference takes place.
For the constructive interference of light through a thin film ( soap bubble), the condition of constructive interference is given as:

where
is the order of constructive interference.
Since the soap bubble is appearing very bright, the order should be 0, as
order interference has maximum intensity.
Thus,

It is the possible thickness of the soap bubble.