1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rudiy27
3 years ago
7

The two major forces opposing the motion of a vehicle moving on a level road are the rolling resistance of the tires, Fr, and th

e aerodynamic drag force of the air flowing around the vehicle, Fd, given respectively by Fr, = fW, Fd= CdA1/2 rhoV2 where f and Cd are constants known as the rolling resistance coefficient and drag coefficient, respectively, W and A are the vehicle weight and projected frontal area, respectively, V is the vehicle velocity, and rho is the air density. For a passenger car with W = 3,550 lbf, A = 23.3 ft^2, and Cd = 0.34, and where f = 0.02 and rho = 0.08 lbm/ft^3.
Required:
Determine the power required, in HP, to overcome rolling resistance and aerodynamic drag when V is 55 mph.
Engineering
1 answer:
anzhelika [568]3 years ago
7 0

Answer:

The power required to overcome rolling resistance and aerodynamic drag is 19.623 h.p.

Explanation:

Let suppose that vehicle is moving at constant velocity. By Newton's Law of Motion, the force given by engine must be equal to the sum of the rolling resistance and the aerodynamic drag force of the air. And by definition of power, we have the following formula:

\dot W = \left(f\cdot W +\frac{\rho\cdot C_{D}\cdot A\cdot v^{2}}{2\cdot g_{c}} \right)\cdot v (1)

Where:

\dot W- Power, in pounds-force-feet per second.

f - Rolling resistance coefficient, no unit.

W - Weight of the passanger car, in pounds-force.

\rho - Density of air, in pounds-mass per cubic feet.

C_{D} - Drag coefficient, no unit.

A - Projected frontal area, in square feet.

v - Vehicle speed, in feet per second.

g_{c} - Pound-mass to pound-force ratio, in pounds-mass to pound-force.

If we know that f = 0.02, W = 3,550\,lbf, \rho = 0.08\,\frac{lbm}{ft^{3}}, C_{D} = 0.34, A = 23.3\,ft^{2}, v = 80.685\,\frac{ft}{s} and g_{c} = 32.174\,\frac{lbm}{lbf}, then the power required by the car is:

\dot W = \left(f\cdot W +\frac{\rho\cdot C_{D}\cdot A\cdot v^{2}}{2\cdot g_{c}} \right)\cdot v

\dot W = 10901.941\,\frac{lbf\cdot ft}{s}

\dot W = 19.623\,h.p.

The power required to overcome rolling resistance and aerodynamic drag is 19.623 h.p.

You might be interested in
Saturated liquid water flows through 2 cm ID stainless steel tubes at 200 g/s. The water is at 80oC and the inside surface of th
EleoNora [17]

Answer:

steel

Explanation:

8 0
2 years ago
Which of the following best distinguishes between superficial design improvements and functional
Contact [7]

Answer:

Superficial design improvements are typically only trivial changes to a design, while functional design improvements can change the way a product or process is used to significantly enhance performance.

Explanation:

As a PC board designer, I would sometimes spend a certain amount of time making traces have shorter routes, or fewer layer changes or bends. (I wanted to make the layout "pretty.") In some cases, these changes are superficial, affecting the appearance only. In some cases, they are functional, reducing crosstalk or emissions or susceptibility to interference.

I deal with a web site that seems to be changing all the time (Brainly). In many cases, the same information is rearranged on the page—a superficial change. In other cases, the information being displayed changes, or the way that certain information is accessed changes. These are functional changes. (Sometimes, they "enhance performance," and sometimes they don't, IMO.)

In short ...

<em>Superficial design improvements are typically only trivial changes to a design, while functional design improvements can change the way a product or process is used to significantly enhance performance.</em>

8 0
2 years ago
Find the number of Btu conducted through a wall in 8 hours. The wall is 8 feet high by 24 feet long and has a total R-value of 1
dedylja [7]

Answer:

ΔQ = 4930.37 BTu

Explanation:

given data

height h = 8ft

Δt = 8  hours

length L = 24 feet

R value = 16.2 hr⋅°F⋅ft² /Btu

inside temperature t1 = 68°F

outside temperature t2 = 16°F

to find out

number of Btu conducted

solution

we get here number of Btu conducted by this expression that s

\frac{\Delta Q}{\Delta t} =\frac{-A}{R} (t2 -t1)     ......................1

here A is area that is = h × L = 8 × 24 = 1492 ft²

put here value we get

\frac{\Delta Q}{8} =\frac{-192}{16.2} (16-68)

solve it we get

ΔQ = 4930.37 BTu

7 0
3 years ago
Considering the analogy between electrical circuit and thermal circuit, show your approach to derive an expression for the therm
Simora [160]

Answer:

Thermal resistance for a wall depends on the material, the thickness of the wall and the cross-section area.

Explanation:

Current flow and heat flow are very similar when we are talking about 1-dimensional energy transfer. Attached you can see a picture we can use to describe the heat flow between the ends of the wall. First of all, a temperature difference is required to flow heat from one side to the other, just like voltage is required for current flow.  You can also see that R_{th} represents the thermal resistance. The next image explains more about the parameters which define the value of the thermal resistances which are the following:

  1. Wall Thickness.  More thickness, more thermal resistance.
  2. Material thermal conductivity (unique value for each material). More conductivity, less thermal resistance.
  3. Cross-section Area. More cross-section area, less thermal resistance.

A expression to define  the thermal resistance for the wall is as follows:  R_{th} =\frac{l}{Ak}, where  l is the distance between the tow sides of the wall, that is to say the wall thickness; A is the cross-section area and k is the material conducitivity.

5 0
2 years ago
Ô tô có khối lượng m (kg) đặt tại trung tâm h . Khoảng cách từ h tới 2 bánh xe hai bên của a (m) và b (m) , khoảng cách vết bánh
Nutka1998 [239]

Answer:

wiwhwnwhwwbbwbwiwuwhwhehehewhehehheheheehehehehhehehwh

Explanation:

jwhwhwhwhwhwwhhahwhahahwh

6 0
3 years ago
Other questions:
  • The popularity of orange juice, especially as a breakfast drink, makes it an important factor in the economy of orange-growing r
    14·1 answer
  • A composite wall is composed of 20 cm of concrete block with k = 0.5 W/m-K and 5 cm of foam insulation with k = 0.03 W/m-K. The
    13·1 answer
  • You are an engineer at company XYZ, and you are dealing with the need to determine the maximum load you can apply to a set of bo
    13·1 answer
  • Calculate the reactions at 4 ends (supports) of this bookshelf. Assume that the weight of each book is approximately 1 lb. The w
    13·1 answer
  • A semiconductor is a solid substance that has a conductivity between that of an insulator and that of most metals. (True , False
    8·1 answer
  • Q1. Basic calculation of the First law (2’) (a) Suppose that 150 kJ of work are used to compress a spring, and that 25 kJ of hea
    6·1 answer
  • Give me source code of Simple openGL project. ( without 3D or Animation) simple just.
    15·1 answer
  • Determine the slopes and deflections at points B and C for the beam shown below by the moment-area method. E=constant=70Gpa I=50
    10·1 answer
  • (I really need help ASAP please!! this is for science her is the problem)
    5·2 answers
  • What is the fastest plane in the world
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!