Answer:
Specific gravity is 0.5 so option (a) is correct option
Explanation:
We have given mass of substance m =10 kg
Volume 
Density of substance is given by 
Specific gravity is given by 
So option (a) is correct option
Answer:
Considering the guidelines of this exercise.
The pieces produced per month are 504 000
The productivity ratio is 75%
Explanation:
To understand this answer we need to analyze the problem. First of all, we can only produce 2 batches of production by the press because we require 3 hours to set it up. So if we rest those 6 hours from the 8 of the shift we get 6, leaving 2 for an incomplete bath. So multiplying 2 batches per day of production by press we obtain 40 batches per day. So, considering we work in this factory for 21 days per month well that makes 40 x 21 making 840 then we multiply the batches for the pieces 840 x 600 obtaining 504000 pieces produced per month. To obtain the productivity ratio we need to divide the standard labor hours meaning 6 by the amount of time worked meaning 8. Obtaining 75% efficiency.
The modulus of elasticity is 28.6 X 10³ ksi
<u>Explanation:</u>
Given -
Length, l = 5in
Force, P = 8000lb
Area, A = 0.7in²
δ = 0.002in
Modulus of elasticity, E = ?
We know,
Modulus of elasticity, E = σ / ε
Where,
σ is normal stress
ε is normal strain
Normal stress can be calculated as:
σ = P/A
Where,
P is the force applied
A is the area of cross-section
By plugging in the values, we get
σ = 
σ = 11.43ksi
To calculate the normal strain we use the formula,
ε = δ / L
By plugging in the values we get,
ε = 
ε = 0.0004 in/in
Therefore, modulus of elasticity would be:

Thus, modulus of elasticity is 28.6 X 10³ ksi
Answer:
a) 
b) 
Explanation:
From the question we are told that:
Pressure 
Diameter 
Generally at sea level

Generally the Power series equation for Mach number is mathematically given by



Therefore
Mass flow rate



Generally the equation for Velocity at throat is mathematically given by
)
Where


Therefore

Generally the equation for Mass flow rate is mathematically given by



Answer:
Explanation gives the answer
Explanation:
% Using MATLAB,
% Matlab file : fieldtovar.m
function varargout = fieldtovar(S)
% function that accepts single structure as input, assigning each
% of the field values to user-defined variables
fields = fieldnames(S); % get the field names of the input structure
% check if number of user-defined variables and number of fields in
% structure are equal
if nargout == length(fields)
% if equal assign each value of structure to user-defined varable
for i=1:nargout
varargout{i} = getfield(S,fields{i});
end
else
% if not equal display an error message
error('The number of output variables does not equal the number of fields');
end
end
%This brings an end to the program