lets work back. The formula to find density is d= m/v. fill in the values you know.
10 = 500/v
well, we don't need to use a calculator. dividing by ten is going to the left once, and removing one value of ten.
this means you have a volume of 50.
Hope this helps! :D
Answer:
The concentration of the unknown acid (HA) is 0.434M
The molar mass of HA is 13.3g/mole
Explanation:
DETERMINATION OF MOLARITY OF THE UNKNOWN ACID
CaVa/CbVb = Na/Nb
From the equation of reaction and at equivalence point, Na = Nb = 1
Therefore, CaVa = CbVb
Va (volume of acid solution) = 20mL = 20/1000 = 0.2L
Cb (concentration of KOH) = 0.715M
Vb (volume of KOH) = 12.15mL
Ca (concentration of acid) = CbVb/Va
Ca = 0.715M × 12.15mL/20mL = 0.434M
DETERMINATION OF MOLAR MASS OF HA
Number of moles of acid = concentration of acid × volume of acid solution in liters = 0.434 × 0.2 = 0.0868mole
Molar mass of HA = mass/number of moles = 1.153g/0.0868mole = 13.3g/mole
Answer:
Q = 1379.4 J
Explanation:
Given data:
Mass of water = 22 g
Initial temperature = 18°C
Final temperature = 33°C
Heat absorbed = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Specific heat capacity of water is 4.18 J/g.
°C
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 33°C - 18 °C
ΔT = 15°C
Q = 522 g ×4.18 J/g.°C× 15°C
Q = 1379.4 J