Yes, depending on the thickness.
<h2>Collision Theory
</h2>
Explanation:
<h3>
The given statement is related to the collision theory -
</h3>
Collision theory was given by William Lewis in 1916.
This theory explains in a qualitative manner that in what way any chemical reaction occurs and the reason for the different reaction rates for different reactions.
<h3>
According to the collision theory -
</h3>
- Molecules must collide in order to react
- Sufficient amount of energy is needed for collisions (kinetic energy) so that the chemical bonds should break
- This energy used is known as the activation energy
- On the increase in the temperature, the kinetic energy of the molecule increases and the molecules move faster and collide with a proper orientation at an increased speed
- This increases the rate of a collision that in turn increases the breaking of the bond
Balanced Half reactions are:
At anode 2
==> Cl₂+
+ H₂O ==>
+ 2
+
At Cathode: 2
+
==> H₂
Since the question states that you are using an aqueous solution of MnCl₂, so ions will have present are, H₂O,
,
and 
Now at Anode reaction will occur as given:
2
==> Cl₂+
+ H₂O ==>
+ 2
+
(will occur)
At Cathode:
2
+
==> H₂ (will occur)
At Cathode:
+
==> Mn (This reaction will not occur)
The deposition of solid Mn will not occur because in aqueous solution,
will be reduced before
.
The reduction potentials for
is zero whereas reduction potential for
is - 1.18V.
The reduction potential of a species is its tendency to gain electrons and get reduced. It is measured in millivolts or volts. Larger positive values of reduction potential are indicative of a greater tendency to get reduced.
To learn more about the half reaction please click on the link brainly.com/question/13186640
#SPJ4
Answer:
107.5 amu
Explanation:
isotopes: fractional Wt Avg
isotopes: isotopic mass %Abundance abundance (amu)
X110 110 60 0.60 66.0
X105 105 30 0.30 31.5
<u> X100 100 10 0.10 10.0</u>
∑ atm mass contributions = 107.5 amu*
*amu = atomic mass units
Answer:
6moles of Li : 1 mole of N₂
Explanation:
The reaction equation is given as:
6Li + N₂ → 2Li₃N
Mole ratio of Li to N₂;
From the balanced reaction equation:
6 moles of Li will react with 1 mole of N₂;
The mole ratio is:
6moles of Li : 1 mole of N₂